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A B S T R A C T

In this study, we present a new method of interpolation and anomaly detection especially designed for sparse, 
clustered or imprecise environmental data (SIC). Such data cannot be processed by current state of the art spatial 
methods and models, including the most widely used, such as kriging. Indeed, the statistics obtained on SIC data 
(on the order of 5–30) do not allow us to define a covariance or to calibrate the numerous hyper-parameters of 
sophisticated Bayesian or deep image prior models. We therefore adapted an information dissemination algo
rithm to handle SIC data. This probabilistic model has been enriched (anisotropy, de-clustering, auto-variog
raphy, multi-support, treatment of covariates, and censored data) in a way that fully meets the needs for 
environmental SIC data and can be used in conjunction with hybrid propagation of epistemic and aleatoric 
uncertainties and anomaly detection, whatever their mathematical form. The new interpolator for anomaly 
detection was applied on a very small set of 13 sparse data points characteristic of small-scale environmental 
studies, on digital-challenge datasets and on two real datasets, i.e., a large-scale geochemical dataset and a SIC 
urban soil dataset. Results highlight the added value of the proposed algorithm, that is able to pinpoint anomalies 
in SIC data, while avoiding in particular the smoothing effects of certain previous methods.

1. Introduction

Data collected in the context of geochemical surveys for mineral 
exploration (i.e., data indicative of the presence of mineralization) or for 
environmental studies (e.g., soil quality that may represent a risk for 
human health or for ecosystems) is often used to produce maps. 
Regarding mineral exploration, such maps can help to identify, e.g., 
geochemical anomalies or drilling locations for further investigations. In 
an environmental context, the maps can serve to highlight contamina
tion anomalies, to prioritize remedial action, or to identify pedo
geochemical background values (Belbèze et al., 2023). Drawing maps 
requires the interpolation of values at locations where there have not 
been any measurements. But this task can be seriously complicated by 
the fact that the data may be SIC, i.e., Ssparse (small number of obser
vations) or Imprecise (data subject to measurement errors) or Clustered 
(heterogeneously distributed). This SIC character can also be found in 
datasets which are not “sparse” per se but which cover larger scales than 
the size of the anomalies or objects of interest; e.g., in geochemical 

surveys over hundreds of km2, in chemical monitoring studies of urban 
soils at the scale of a few km2, or in potentially contaminated site studies 
(scale of a few hm2).

Spatial interpolation requires a solution to a complex problem that 
estimates a value from observed values. There exists a plethora of 
interpolation methods, all of which have their specific advantages and 
drawbacks, especially in presence of SIC data. In this study, we present a 
new method of interpolation and anomaly detection especially designed 
for such data. The underlying hypotheses of previous interpolation 
methods, including the widely known kriging method, are often ill- 
suited to SIC data. Indeed, the statistics obtained on SIC data do not 
allow the definition of a covariance or to calibrate the numerous hyper- 
parameters of sophisticated Bayesian or deep image prior models. As 
geostatistical and hybrid machine learning methods cannot be cali
brated with small datasets (on the order of 5–30), non-geostatistical 
methods are usually used, but the latter do not convey uncertainties 
associated with, e.g., values below the detection limit (Belbèze et al., 
2023; Li and Heap, 2008, 2011; Li, 2012). We therefore adapted an 
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Table 1 
Characteristics of key methods used to map European soils.

Encountered approaches Description Example

No maps – dot plots only These authors do not produce 
interpolated maps because 
the variability observed in 
their data excludes this type 
of treatment or because the 
density of measuring points 
does not allow it (Reimann 
et al., 2008; Rhind et al., 
2013).

Reimann et al., 2018; 
Négrel et al., 2019

Inverse Distance 
Weighting (IDW)

Inverse Distance Weighting 
(IDW) is based on the 
intuitive notion that nearby 
points have more influence 
than far-away points. IDW is 
known to respect the data 
and any anomalies on the 
interpolation grid (Grunsky 
and De Caritat, 2017). It is by 
far the most widely used 
interpolation method for 
geochemical backgrounds.

Négrel et al., 2015

The nearest neighbor 
algorithm (NN) and 
Triangulated Irregular 
Network (TIN)

TIN triangulation is an 
algorithm that uses Delaunay 
triangles. It creates triangular 
surfaces between close 
neighbors and propagates the 
contents linearly along the 
facets of the triangle. These 
methods are exact 
interpolators and do not 
extrapolate. They perform 
rapidly for densely sampled 
areas. NN or TIN type of 
interpolation are useful 
because they do not smooth 
out the data and allows for 
rapid visualization of the 
studied phenomena trends in 
an implicitly more precise 
way if the points are close 
together and in an imprecise 
way elsewhere. The choice of 
a TIN method assumes that 
the physical phenomenon 
under consideration consists 
of a linear trend to which a 
fluctuating error of small 
amplitude is added.

Jordan et al., 2018

Simple kriging (K) Kriging interpolation (Chilès 
and Delfiner, 2013) is similar 
in its general form to the 
IDW, but differs in the way 
the weights are calculated. 
While IDW uses an inverse 
distance determined 
covariance function, kriging 
assumes that the data is 
regionalized (strong 
hypothesis), uses an expert 
driven covariance function 
and tends to eliminate local 
anomalies. However, the 
map is still very informative 
and highlights trends. This 
process is consistent with the 
underlying idea of smoothly 
varying geochemical 
concentrations.

Tarvainen et al., 2013; 
Reimann et al., 2014a, 
2014b

Kriging with external 
drift (KED)

Kriging with external drift 
(KED) has been used by the 
major European mapping 
projects FOREGS and LUCAS, 
as well as for countries which 
use geostatistical methods of 

Tarvainen et al., 2005; 
Lado et al., 2008; Tóth 
et al., 2013; Tóth et al., 
2016; Heuvelink et al., 
2016; Pereira et al., 
2012; Maas et al., 2010

Table 1 (continued )

Encountered approaches Description Example

the Paris School of Mines; i. 
e., France, Australia, 
Belgium, and Algeria. The 
methods for establishing 
drifts before KED are varied 
and range from simple linear 
regression to the most 
advanced partitioning 
methods (such as 
multinomial logistic 
regression, C5 decision tree, 
and random forest). The book 
Digital Soil Mapping from the 
Sydney Institute for 
Agriculture (Malone et al., 
2017) is a reference for the 
implementation of the KDE 
method, that runs on the R 
platform.

Multilevel B-splines with 
external drift (MBSDE)

In multilevel B-splines with 
external drift, the MBS 
performs as well as kriging, 
but it is computationally 
faster. The methods for 
establishing drifts before 
MBS are the same as for KED. 
For the LUCAS project, a 
Cubist model was used as a 
drift.

Panagos et al., 2014

Quantile Regression 
Forest (QRF)

Random forest (RF; Breiman, 
2001) and its extension 
quantile regression forest 
(QRF) (Meinshausen, 2006), 
are interesting and versatile 
machine learning algorithms 
for digital soil mapping. The 
QRF estimates the 
probability distribution of 
the prediction and thus an 
informative uncertainty is 
associated with the RF 
prediction (Khaledian and 
Miller, 2020). 
Recently Fendrich et al. 
(2024) have coupled a semi- 
parametric GAMLSS model 
and QRF for a European 
mapping of arsenic taking 
into account censored data 
Some pending questions are 
the over- and 
underestimations induced by 
heterogeneous populations.

Van Eynde et al., 2023; 
Xiao et al., 2023; 
Hengl et al., 2021; 
Wadoux et al., 2020

C-A and S-A fractal 
methods. Multifractal 
Inverse Distance 
Weighting 
interpolation (MIDW)

In the European projects 
GEMAS and FOREGS, Italy 
applied the C-A and S-A 
fractal methods for 
establishing background 
noise. MIDW was used for 
mapping. In the 
heterogeneous urban 
context, such a fractal log- 
linear relationship can only 
be established locally. Some 
pending questions are the 
calculus self-similarity and 
its relationship with the 
method used for the base 
plan, the geometry of the 
counting zone and the edges 
of the calculation domains 
where the amount of 
information is decreasing.

Albanese et al., 2007; 
Civitillo et al., 2016; 
Petrik et al., 2018

Ensemble of machine 
learning models

This state-of-the art ensemble 
approach includes five 
different models: Cubist 

Ballabio et al., 2024

(continued on next page)
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information dissemination algorithm that was developed by Zeydina 
and Beauzamy (2013) to handle SIC data. The resulting algorithm is 
applied to 4 case studies that each shed light on its capabilities. The first 
case study is a set of core-sample data from Dahlberg (1975), with only 
13 data points. With this type of dataset, it is impossible to construct a 
variogram and therefore to perform any sort of meaningful kriging or to 
find hyper parameters for an AI model. The second dataset, from a 
digital challenge (Dubois and Galmarini, 2005), is a set of approximately 
two hundred data that are used to detect anomalies. The other two 
datasets are from real surveys of concentrations of various elements in 
soil, i.e., the large-scale European soil survey (over 2000 data points), 
with which some 50 arsenic anomalies were identified (GEMAS Project; 
Tarvainen et al., 2013) and the soil survey of the city of Toulouse 
(France) performed for the purpose of defining urban geochemical 
backgrounds (Belbeze et al., 2019).

This article addresses probabilistic information diffusion mapping 
and innovative algorithmic developments for the interpolation of SIC 
data and the production of anomaly maps. The underlying theory and 
basic equations are described and the algorithm is applied to the above- 
mentioned datasets. Further development of the proposed Incomplete 
Imprecise Spatial Data Interpolator Algorithm (IISDIA) and anomaly 
detector is currently ongoing as part of the Horizon Europe Mission Soil 
project ISLANDR (https://islandr.eu).

2. Definition of requirements for SIC data interpolation and 
anomaly detection

2.1. Epistemic choices regarding interpolation of data collected at 
European scale

Maps showing the concentration of various elements in soil at the 
continental scale of Europe are regularly proposed. The spatial inter
polation techniques used vary depending on authors and project ob
jectives. For example: moving median (MM; Tarvainen et al., 2005), 
kriging (K; Tarvainen et al., 2013), multilevel B-splines (MBS; Panagos 
et al., 2014), kriging with external drift (KED; Tóth et al., 2013, 2016; 
Heuvelink et al., 2016), geographically weighted regression (GWR; Xu 
and Zhang, 2021; Zhang et al., 2011), quantile regression random forest 
(QRF; Van Eynde et al., 2023; Xiao et al., 2023) and for one of the most 
recent, a composite of five different models (Ballabio et al., 2024). 
Table 1 presents the characteristics of these key methods. This list is by 
no means exhaustive but highlights a few examples from selected high- 
visibility projects, to illustrate current practice. For additional infor
mation, a more comprehensive review of interpolation techniques used 
by geochemists to establish urban geochemical backgrounds can be 
found in Belbèze et al. (2023). The general process used for these 
different mapping techniques is the following: an expert examines the 

data, selects a geospatial model and calibrates it. To facilitate this 
exploration of experimental data, some data (e.g. outliers) are removed 
and more-or-less complex transformations are typically applied to the 
data, such as, e.g., logarithm transformations, primarily to ensure 
Gaussian data characteristics, which is a prerequisite of certain inter
polation methods. The chosen model is then calibrated (see below), and 
soil content values are estimated. In more detail, exploratory spatial data 
analysis involves removing certain outliers based on expert opinion and 
assessing the relevance of various methodological choices, such as sta
tionarity, support, additivity, and accumulation. This step may require 
data transformation techniques like log translation, anamorphosis, or 
Box-Cox transformations, as well as constructing an external drift using 
models that may include machine-learning algorithms. Additionally, 
spatial statistics are calculated, including variogram analysis and tuning 
of covariance hyperparameters. When calibrating a geostatistical 
covariance model based on an experimental variogram, only a limited 
number of derivable functions can be used, such as the exponential, 
spherical or Mattern model. While the model can be calibrated auto
matically using methods such as least-squares or maximum likelihood, 
the investigator still controls and sets the shape beforehand. For ma
chine learning algorithms like QRF or Ensemble Machine Learning 
models, hyper-parameter calibration is essential and involves multiple 
runs or anneals, such as determining the number of random trees or 
resampling parameters. As a co-variable or to construct their external 
drift, interpolation models use correlations between low-density 
measured values and a densely sampled variable (such as geology or 
land use, etc.) in order to increase the output map resolution This is 
behind the CLORPT concept (CLimate, Organisms, Relief, Parent mate
rial, and Time; Jenny, 1994) or SCORPAN concept (SCORPAN = Soil or 
measured attributes of the soil at a point; Climate; Organisms, including 
land cover and natural vegetation; Relief, topography including terrain 
attributes and classes; Parent material, including lithology; Age, the 
time factor; N, space, spatial or geographic position; McBratney et al., 
2003). The objective is to co-model the results from sparse measured soil 
content data surveys with measurements of covariates (geology, land 
use, photographs, etc.) that are evenly distributed over the area. How
ever, it should be warned that the approach may suffer from un
certainties related to model calibration and, for the methods mentioned 
above, to the cascade of covariate scales which may generate a “false 
reality”. This results from epistemic uncertainties (i.e., due to incom
plete model knowledge). As illustrated by, e.g., Ferson and Ginzburg 
(1996) or Loquin and Dubois (2010), such uncertainty should be 
distinguished from stochastic uncertainty, which stems from the random 
variability of natural phenomena underlying the measured quantity (e. 
g., heterogeneity in space and/or time).

To summarize, the various interpolation model approaches often rely 
on several strong hypotheses and epistemic choices, e.g., that the phe
nomenon to be interpolated is continuous between two measurements; 
that data transformation (log, normal score, anamorphosis) does not 
lead to misinterpretation; that values considered as anomalous can be 
removed from the calculation, etc. Experts generally select two models, 
e.g., one for the spatial response of the variable and one for its links to 
explanatory parameters (covariates), often with the assumption that the 
greater the number of covariates, the better the result. When these 
expert models have sufficient data and are well calibrated, they are 
effective, validated, and published, but if the data are SIC (Sparse, 
Imprecise, Clustered), the epistemic uncertainty of such mappings in
creases significantly. This is also the case for advanced geochemical 
filtering such as the filtering co-kriging developed by Sauvaget et al. 
(2022) or the MAF/ILR filtering kriging used by Melleton et al. (2021). 
They are only possible when the quantity of data is large and the spatial 
structuring is correctly modelled by an expert. Otherwise, a new algo
rithm tailored for SIC data is necessary, which enables to cover all 
possible scenarios and, above all, the diversity of measurement sources 
that other methods cannot always take into account with so many 
epistemic choices.

Table 1 (continued )

Encountered approaches Description Example

regression trees (Quinlan, 
1993), ordinary least squares 
(OLS) regression (Andrade 
et al., 2020), xgbTrees (
Friedman, 2001), elastic net 
regression (Friedman et al., 
2010), and Gaussian process 
regression (GPR). The 
ensemble's combined output 
is pooled into a single 
prediction using a Cubist 
meta-model. Thus, a 
concentration can be 
predicted in various ranges of 
its value by different models 
to increase the prediction 
accuracy.
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In summary, the desired properties for such a spatial interpolator are 
i) no transformation of data; ii) no outlier removal; iii) no variogram or 
hyper parameter expert model (to avoid smoothing anomalies); iv) 
possible application to moving windows of <10 data in a non- 
stationarity context. Therefore, the interpolator should be sufficiently 
robust and applicable for anomaly detection or forensic soil provenance 
(Aberle et al., 2023). Nevertheless, with the IISDIA interpolator pre
sented herein, the expert still has the possibility to add knowledge 
regarding physical phenomena and various information such as di
rections of structures, ranges of variables, sample quality, dissonance, 

etc. (Fig. 1).

2.2. A multimethod experiment

To illustrate the proposed approach, we first consider the example of 
geochemical data collected on a regular transect intercepting several 
geological formations and a veins zone that could host a mineral deposit. 
First a sample of 15 data points is selected to obtain the SIC dataset to be 
interpolated. Next several interpolation techniques are applied; a geo
statistical technique (Chilès and Delfiner, 2013) known as universal 

Fig. 1. Fishbone diagram for the IISDIA algorithm. The fishbone diagram is a tool for identifying the main causes of a problem by categorizing ideas, which guides 
algorithmic development. Here, this diagram indicates the main errors and uncertainties in our data and knowledge that can affect the IISDIA interpolator.

Fig. 2. An interpolation experiment on a sparse set extracted from a geochemical transect intercepting several geological formations and veins that may host a 
mineral deposit. a) Universal kriging, splines, cubic and linear interpolator applied to 15 data points, b) Experimental and model variogram used for the Universal 
kriging interpolation, c) Geological map of the area and transect locations, and d) Universal Kriging, splines and Experimental Probabilistic Hypersurface applied to 
15 data points. The response factor is the log ratio of the content to its background.
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kriging (which incorporates an automatic trend), a spline method 
(Buhmann and Jäger, 2021), a cubic interpolator (Quarteroni et al., 
2010) and a linear interpolation method (Fig. 22a). Compared with the 
reference dataset, a strong smoothing effect is observed due to the 
scarcity of the data and the algorithms used. The variogram generated 
for universal kriging shows that the data are not stationary (the mean is 
not constant since the data are taken from different geological forma
tions). Thus, the calibration of the model is awkward without additional 
knowledge of the underlying geology (epistemic uncertainty). Kriging 
and splines seek to establish a spatial structure in the data, in the form of 
a covariance as a function of distance between observations (Fig. 2b). 
This limits the applicability of these models when the data are SIC 
(Belbèze et al., 2023; Malone et al., 2017; Helsel et al., 2012; Reimann 
et al., 2008). Using now the EPH (Experimental Probabilistic Hyper
surface; Zeydina and Beauzamy, 2013) algorithm detailed in the next 
section, we obtain the Fig. 2d where the anomalies are seen to be sharper 
and where, unlike with the other methods, an anomaly corresponding to 
the orogenic veins (Fig. 2c) is detected. The geological interpretation of 
this transect is that two areas are sampled with two orogenic veins. 
(Fig. 2c).

3. Interpolator development methodology

3.1. EPH base algorithm

Information diffusion mapping is becoming increasingly popular in 
situations where there are not enough data points to obtain a statistically 
relevant variogram for geostatistical methods (Berton, 2018; Huang 
et al., 2019). Driven by image processing research (Ho et al., 2020), 
diffusion models produce impressive artificial intelligence-generated 
image quality (Dhariwal and Nichol, 2021). Two mathematical ap
proaches led to this theoretical development. The first, developed in 
China, is based on potential and the analogy between information 
transfer and natural phenomena such as diffusion or vibration and is 
simply called Information Diffusion. This technique has been applied to 
various fields, including flood hazard mapping (Huang et al., 1998; Zhou 
et al., 2000; Yi et al., 2007 etc.), seismicity (Bai et al., 2015), and more 
recently, precipitation (Huang et al., 2019). The second approach, 
known as Experimental Probabilistic Hypersurface, was developed by 
Beauzamy (2004) and relies on the propagation of information entropy 
(Zeydina and Beauzamy, 2013). This entirely probabilistic method has 
been utilized for nuclear safety calculations (Godan et al., 2015) and for 
diverse models such as neutron sensor networks for nuclear reactor 
operation and territory monitoring for radioactive plumes (Khalipova 
et al., 2018). It is designed to minimize assumptions, particularly by 
avoiding a fixed model of data covariance, and in its simplest version, it 
excludes spatial covariance, showing immunity to outliers, which it 
magnifies instead. According to Beauzamy (2004), information propa
gation is based on a general principle of maximum entropy (or minimum 
information), which is itself an increasing function of distance to the 
measurement point of the law of Ci versus distance (Fig. 3).

The demonstration is based on entropy propagation of uniform laws 
and makes use of three proven lemmas: minimal information; maximal 
entropy; distribution with maximal entropy and fixed variance (Zeydina 
and Beauzamy, 2013). From a less abstract point of view, the EPH 
interpolator resembles a spatial kernel method. Several spatializations 
of the kernel method (Parzen, 1962) have been proposed such that the 
neighbor effect decreases with distance, as it does in reality (Levine, 
2010; Gibin et al., 2007; Xie and Yan, 2008). But EPH is somewhat more 
complex because the weighting of the kernel and the diffusion co
efficients are nonlinear functions of distance to coordinates and pa
rameters. The EPH model produces its estimates in the form of a discrete 
probability distribution for a given interval and requires two input pa
rameters: min-max limits of each dimension (parameters); min-max 

Fig. 3. Entropy variation with the distance to point X to be evaluated. Obser
vation points are denoted by Ai, i = 1, …, n where content Ci has been 
observed; λ is the entropy of the law of Ci versus distance d. [xmin, xmax] is the 
range of coordinates.

Fig. 4. Information diffusion process attenuated by neighbor distance to X. Point X is to be evaluated. Observation points are denoted by Ai, i = 1, …, n where 
content Cihas been observed.[xmin, xmax] is the range of coordinates.
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limits of the modelled phenomenon and discretization of this interval (τ 
steps, μ intervals). The min-max limits may be derived from expert 
knowledge or physical limits or may be defined by a user after studying 
the data. In practice, the discretization step τ corresponds to the preci
sion required (ppm, ten ppm, etc.). A small change in the min-max limits 
has in any case little impact on the final result.

Considering n observation points, noted by Ai, i = 1, …, n where Ci 
has been observed, X is the point at which a c estimate is to be obtained, 
and K parameters are available for each measurement point and are 
available for X. We then have a manifold hyperspace Ai(a1,…, aK) and 
X(x1,…, xK). Each n-point Ai contributes to the final result of the density 
of X according to Eq. 1. 

PAi ,j(X) =
τ

σ
̅̅̅̅̅̅
2π

√ exp

[

−

(
cj − Ci

)2

2σ2

]

(1) 

Density of this kind takes the form of a Dirac function at the location 
of a measurement point (the value is known precisely) and becomes 
increasingly less concentrated with distance (Fig. 4). N-point contribu
tions Ai to point X are recombined to form a single Pxj where the various 
contributions are weighted according to the distance between the target 
point and each measurement following Eq. 2: 

Pxj(X) = γ1P1,j(X) +…+ γnPn,j(X) =
∑n

i=1
γi PAi ,j (2) 

where di = d(Ai,X) is the distance between the point to be reconstructed 
and the i-th measurement (Eq. 3 and 4): 

di = d(Ai,X) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑K

k=1
(ak − xk)

2

√
√
√
√ (3) 

γi =
d− k

i
∑n

i=1
d− k

i

in dimension k (4) 

In fact, each Pxj(X) is a conditional probability given the other 

measurements made according to Eq. 5 and illustrated in Fig. 4: 

Pxj(X) = Px|A1 ,..An ,j(X) =
∑n

i=1
γi PAi ,j (5) 

The diffusion coefficients (σ) can be calibrated by maximum likeli
hood (Bartkute and Sakalauskas, 2008). The Gaussian form of the in
formation comes from the fact that the distribution with maximum 
variance for a fixed entropy is Gaussian (Zeydina and Beauzamy, 2013). 
From this probability distribution in X, we can extract a confidence in
terval. We can also easily modify the distribution of coefficient calcu
lation γi or PAi ,j(X) to include uncertainties. It is also possible to calculate 
several Pxj(X) by m Monte Carlo iterations of a parameter and combine 
these EPHs to obtain the resultant according to Eq. 6 with qk being 
probability of scenario k: 

Pxj(X) =
∑m

k=1
qkPxj

k(X) (6) 

However, the examination of the algorithm's response to the entire 
range of parameter variations and their interactions, the latter method 
rapidly becomes too costly. Therefore it is preferable to use a global 
Monte-Carlo approach based on a probability of exceeding a threshold 
with several possible situations.

3.2. Enhanced EPH base algorithm

The proposed enhancement of the EPH method involves the intro
duction of additional knowledge in the calculation of the original 
“neutral” EPH (Zeydina and Beauzamy, 2013) such as, e.g., including 
the scope of phenomena, the weight of explanatory variables, uncer
tainty on variables, declustering, anisotropy, etc. These modifications 
required adapting the EPH equations or encapsulating the EPH in a 
double global Monte Carlo scheme (Fig. 5). The scheme was coded in R 
(R Core Team, 2022) and designated as EEPH for Enhanced Experi
mental Probabilistic Hypersurface. All changes made to the EPH that 
have led to the EEPH are described below since to-date, no probabilistic 
algorithm of this type has been proposed in the literature.

Fig. 5. Building the Enhanced Experimental Probabilistic Hypersurface (EEPH).
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As the new interpolator yields a full probability density for each 
point, even when data are SIC, an entire range of probabilities is 
explored, while other interpolators rely on assumptions that are often 
hard to verify in practice such as inverse distance or variogram. More
over, the new interpolator can account for measurement or parameter 
uncertainty. If it has been established, for example, by expert opinion or 
using an experimental directional variogram, that the measurements 
have a geometric anisotropy, this knowledge can be included in the 
calculation by setting angles and ratios. There is another type of 
anisotropy called zonal anisotropy, which is more difficult to integrate 
into SIC data if it is detected, as it requires knowledge of the populations 
involved. In that case, we can either distort the data space or partition 
the populations and handle them separately. To do so, we can make a 
precise selection of neighbouring data and perform a local EEPH. This is 
especially true in the case of groundwater, where flowlines change di
rection at soil permeability interfaces.

While EPH is unaffected by outliers, it is algorithmically very sen
sitive to data clusters (Berton, 2018), which can bias its spatial proba
bility calculation. As a countermeasure, a cluster bias correction weight 
Wclus has been developed based on the Hclust 3.6.2 version of R Core 
Team (2022). Different declustering methods exist, and we have adapted 
a two-point declustering method originally developed by Richmond 
(2002). An attractive aspect of this technique is that it does not depend 
on the selected grid configuration, but rather on the position of the 
detected clusters. The experimental variogram is the tool of choice for 
studying the range of a physical phenomenon (Chilès and Delfiner, 
2013). It is a powerful tool that provides information on the spatial 
behaviour of soil content. In geostatistics, a variogram is modelled 

assuming a variety of assumptions which, in the case of SIC data, are not 
applicable. Nevertheless, the variogram provides information on 
different zones, their average extension, their anisotropy, and is useful 
to calculate systematically on all the data or a group of data points 
thought to have a particular behaviour. If it is established, for example, 
by expert opinion or by means of an experimental variogram that the 
neighbourhood measurements no longer have any influence beyond a 
certain Radius of Influence (RoI), it is possible to modify this dmax 
quantity in the EEPH, which adapts the slope of the entropy accordingly 
(Fig. 6).

As with kriging, the map produced then considers a range of phe
nomena but loses the neutrality on the notion of content continuity and 
the anomalies detection that are the algorithm's strength. Another op
tion for EEPH would be to introduce various Euclidean distances as 
parameters, based on the work of Behrens et al. (2018). This involves 
generating concentration variables as a function of the distance between 
points. This process is analogous to the construction of an experimental 
variogram. These concentrations are then injected into the calculation as 
covariates. The spatial proximity of low, medium, and high values to our 
probability at a given point then becomes part of the calculation. In the 
EEPH, distances are already accounted for once via the diffusion coef
ficient, but considering the differences between concentrations goes 
even further, revealing a statistical data structure comparable to those 
seen in variograms. This algorithm has been coded for the EEPH but, like 
the variogram, it is highly dependent on the number of points (a mini
mum of 50–100 pts. is required). Therefore, when used on a dataset with 
a significant number of measurement points, this algorithm produces 
results comparable to kriging for a quantile random forest algorithm 

Fig. 6. Modified entropy growth with distance. RoI is the chosen range of influence. When unknown RoI is set to dmax.

Fig. 7. Effect of support on content histograms with a) based on BRGM ore prospect data and b) based on Sinclair and Blackwell (2002).
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(QRF; Hengl et al., 2018).
While SIC data does not typically carry continuity or even trend in

formation; a strong epistemic hypothesis is made when an expert- 
selected continuous spatial covariance is imposed on the data. To 
establish such “continuity” in EPH, we need to introduce at least one 
parameter to convey it. If the main causal factor of soil content is the 
geological nature of the subsoil, using this information as a parameter 
will restore a continuity of phenomena that cannot be deduced from the 
data alone. Taking the example of the GEMAS project (Tarvainen et al., 
2013), a surface soil sample is a 2–2.5 kg sample collected from a 10 m 
grid by adding and mixing (compositing) 5 samples (subsites) on the 
grid. This protocol assigns the analysis result to the mesh size, which 
means that the average of the samples is attributed to it. It should be 
noted that the notion of scale applies here, as it does to all mapping 
(Lindeberg, 1997). This is because soil content is subject to physical 
laws, among which spatial additivity. The average over an area (A) or 
volume (V) must be equal to that of its sub-sections vi. This volume V or 
vi is referred to as the “support” for the content information. Apart from 
the mean, statistics such as variance will vary depending on the support. 
Changing supports (large samples/small samples, boreholes/grids, etc.) 
in geostatistics is of the utmost importance, and is directly related to the 
physical laws of sampling described above. Difficulties arise particularly 
when merging two differently-sampling campaigns. Fig. 7 shows the 
effect of sampling the content support.

We observe in Fig. 7 that although the mean remains fairly stable 
between supports, the variance decreases sharply. In geostatistics there 
are methods to account for changes of support, particularly when soil 
measurements are performed at a precise location (such as soil cores or 
trenches), and the contents must be estimated on panels or supports that 
are much larger than those observed. The geostatistical approach in
volves modifying the spatial function models (covariance, variogram) 
that describe the spatial dependence between observations to account 
for the change in support (Chilès and Delfiner, 2013). These techniques 
require excellent variogram modelling and therefore a significant 
amount of data. Once the models have been calibrated, a theoretical 
point location model is calculated; the calculations are performed before 
being re-transformed into output support (Kasmaeeyazdi et al., 2020). 
For the EEPH, three main cases of support change have been considered, 
depending on the type of sampling encountered.

Firstly, if the sampling is of good quality, in line with mining 

standards between sampling campaigns, supports are known and 
documented. The supports are based on strict equi-probabilistic sam
pling rules that guarantee additivity. In this case, content is corrected for 
its support to give accumulations (Chilès and Delfiner, 2013), and maps 
are made for these before being switched back to map support. In 
addition, this type of mining-inspired sampling always has extensive 
error management, with duplicates, etc. This makes it possible to effi
ciently fill in the error function as a % of the mean introduced in the 
EEPH equations.

Secondly, the sampling may be of average quality. For example, 
there is no correspondence between sample lengths and the lithology 
measured, and it is not possible to work in accumulation. Nevertheless, 
sampling has been carried out according to a fixed protocol, as is 
customary for studies of polluted sites and soils by environmental con
sultants. The proposed approach is as follows: we place ourselves in a 
mesh comprising samples from two different supports (small support S1, 
large support S2) supposed to represent the same content (in the case of 
sampling, we consider them to represent the same profiles or collocated 
boreholes). If they had been identical, their average would have given 
the grade of the mesh. As this is rarely the case, we assign to the smallest 
support a virtual value that it would have in the large support S2 asso
ciated with significant local error (Lajaunie, 1996). For our EEPH, the 
virtual content of the small support becoming S2 would be between the 
value obtained for the large support and that of the small support. This 
interval will be taken uniformly and produce the sample corrected map.

Thirdly, and last considered case, the sampling is of poor quality. 
Either the mass sampled is insufficient according to the Visman equation 
(Visman, 1969) or the sampler did not sample the soil correctly (termed 
“Grab sampling” in Minkkinen and Esbensen, 2009). A composite of 
samples is necessary to restore correct averaging, which means 
degrading the resolution of the datasets to make them compatible. An 
example of such a drastic countermeasure can be taken from Ingamells 
and Pitard (1986). In this case, a dozen boreholes were drilled in a cobalt 
mine in the 1980s. The results of the sample appear to indicate that there 
is little cobalt in the panel boreholes, with the exception of two samples. 
The mine might have been abandoned, but the excavation was carried 
out based on the geological expert's opinion. It yielded minable ore with 
0.2 % cobalt. The cobalt was concentrated in pockets and grains that 
were only randomly intersected by drilling. The pattern of the histogram 
can help predict such a phenomenon: it's not a log-normal but an 

Fig. 8. Keeping only the min and max for each point on each N Monte Carlo run to feed the risk calculus. F is a possible spatial cumulative distribution function of 
soil content C. Fmin (plausibility) and Fmax (credibility) are probability bounds of Fs (Shafer, 1976).
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Table 2 
Triangular fuzzification (TFN) of anomaly detection techniques index on the GEMAS dataset.

5-item Likert scale Reimann 
statistics

Zero probability Bands 
Index

Index C-A 
fractal

Singularity 
index

Moran 
index

Anomaly cluster 
Index

Nemerow 
index

TFN

Virtually certain TIF 3 4 0.5 10 3 6 (81.4, 100, 
100)

Very likely Q98 2 3 1 3 2 3 (61.6, 81.4, 
100)

Likely Q95 1 2 1.5 2 1 1 (22.6, 41.5, 
61.6)

About as likely as 
not

– 0 1 2 1 0 0 (0, 22.6, 41.5)

Unlikely – – 0 2.5 0 – – (0, 0, 22.6)

Table 3 
Anomaly detection TFN meta-ranking weights selected by author.

Anomaly index Type of outlier Expert opinion Expert 5-item Likert 
scale

TFN wi

Reimann statistics Range outlier Very efficient if data is not multimodal. Very good (0.3, 0.38, 0.45)
Zero probability 

bands index
Range outlier Relationship 
outlier

Detects outliers on small sample sets like ITA3 but less effective for big surveys 
like the GEMAS

Poor (0.005,0.01,0.03)

C-A fractal index Range outlier 
Spatial outlier

A statistical fractal method. Choosing Limits on a C-A curve is subjective. Average (0.05, 0.04, 0.1)

Singularity index Spatial outlier Window-based fractal statistics. Efficient on GEMAS dataset Good (0.17, 0.24, 0.3)
Moran index Spatial outlier Window-based variogram based statistics. Efficient on big anomalies but didn't 

detect light-signal anomalies
Average (0.02, 0.03, 0.1)

Anomaly cluster 
Index

Spatial outlier Relationship 
outlier

Window-based cluster statistics. Good (0.17, 0.3, 0.4)

Nemerow index Spatial outlier Range outlier Not possible on our GEMAS dataset but very efficient on ITA3 Very good (0.3, 0.38, 0.45)

Fig. 9. Four different SIC dataset interpretations adapted from Dahlberg (1975). a) 13 sand thickness data points in m, b) manual geologist triangulation, c) geologist 
interpreting profiles as Channel sand deposits and d) geologist map interpreting profiles as regional northwest strike and southwest paleoslope fluvial deposits.

Fig. 10. EEPH-Expectation generated maps with 13 data points from Dahlberg (1975). a)EEPH Expected value with altered range to 0.1 distance units b) EEPH 
expected value map with 2:1 N60E anisotropy assuming channel sand model c) EEPH expected value map with 2:1 S60W anisotropy assuming a regional northwest 
strike with a southwest paleoslope.
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approximate double Poisson distribution that shows some cyclicity.

3.3. Addressing uncertainties in the interpolation

Uncertainties appear at all stages of a geochemical survey, i.e., 
sampling stage (e.g., core loss, imprecision regarding geolocalization of 
samples, etc.), analysis stage (analytical uncertainty), interpretation 
stage (e.g., uncertainty regarding covariates), etc. To account for such 
uncertainties in the spatial EEPH scheme, the approach developed in 
HYRISK (Baudrit et al., 2006; https://github.com/BRGM/HYRISKdev) 
was used. HYRISK is an R package for addressing uncertainty in risk 
assessments that accommodates uncertainties of both epistemic and 
stochastic origin (Dubois and Guyonnet, 2011), using, e.g., probability 
distributions, fuzzy numbers, simple intervals or probability distribu
tions with imprecise moments, that the modeler may select depending 
on the nature of available information. The uncertainty propagation 
procedure combines Monte Carlo random sampling with fuzzy interval 

analysis (see also Baudrit et al., 2007). Sensitivity analysis is included 
based on the pinching method of Ferson and Troy Tucker (2006). As 
illustrated in the Dahlberg (1975) application case shown below, with 
this version of the EEPH algorithm, for each measurement point or 
parameter, the user can specify a type of uncertainty (possibility, 
probability, imprecise probability, …). The distribution is then sampled 
and the qk weight is calculated. The EEPH calculation is then run in full 
tensor mode of probability, which will generate a possibilistic content 
input at each point.

When the uncertainty of a parameter is known in discrete, interval, 
fuzzy number, or distribution interval form, we can consider various 
values for it and, as we have seen, perform as many EEPHs as necessary, 
which will be recombined to yield the final result (Fig. 8). This system is 
particularly suitable for uncertainties that cannot be incorporated 
directly into the EEPH calculation. This would be the case for X and Y 
positioning errors or other parameters. The presence of what are known 
as censored values corresponds, e.g., to values below the limit of 

Fig. 11. 13 data points from Dahlberg (1975) and corresponding EEPH-generated map. a) EEPH expected value with 4/13 points values censored to be below 7 m 
(<LoQ) b) EEPH expected value with 4/13 < LoQ and 8/13 point values set with analytical uncertainty (ERR) of 20 % and 1/13 of 30 %. c) full spatial cdf tensor 
generated by EEPH with 4/13 < LoQ and 8/13 with analytical uncertainty of 20 % and 1/13 of 30 %.

Fig. 12. 13 data points from Dahlberg (1975) three slices of the full spatial cdf tensor of Fig. 11 and the corresponding Trapezoidal fuzzy number generated on an 
uncertain sample point.
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quantification (<LoQ). Their presence changes the shape of content 
distribution functions and can bias our estimates of probability density 
by EPH. To remedy this while adding a minimum of assumptions to the 
calculation, we propose a discretization approach in the EEPH. We 
replace our unquantified values with discretized (and un-simulated) m 
values of index k between 0 and LoQ, calculate the EPH of each, then 
agglomerate these EPHs weighted by the probability of occurrence qk of 

the discretized content. By default, this is a draw on a uniform distri
bution (interval), to avoid giving any particular shape to our uncertainty 
for the value below LoQ. However, the algorithm remains compatible 
with a possibilistic approach (Baudrit et al., 2006, 2007), and the LoQ 
distribution could just as well be a possibility instead of a uniform 
probability. With SIC data, there is no reason to prefer one distribution 
over another.

Fig. 13. 13 data points from Dahlberg (1975) with uncertainty prior (content corrected by core loss measurement and sample representativeness) in each point set in 
Hyrisk formalism and the corresponding EEPH map generated. a) expected value map of the SIC set and b) SIC set in Hyrisk format. “proba” is a probability dis
tribution prior; “impr proba” is an imprecise probability distribution prior; “possi” is a possibility distribution prior.

Fig. 14. EEPH tests on Dataset 1 from the SIC2004 exercises obtained in 0.15 s (dataset from Dubois and Galmarini, 2005). a) true set 1, b) training set 1, c) EEPH 
expectation on validation set and d) EEPH expectation on gridded domain.
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Fig. 15. EEPH tests on Dataset 2 “joker set” from the SIC2004 exercises obtained in 1 s (dataset from Dubois and Galmarini, 2005). a) true set 1, b) training set 1, c) 
EEPH expectation on validation set, and d) IISDIA spatial anomaly detection.

Fig. 16. Two EEPH interpolation methods for mapping total petroleum hydrocarbon (TPH) and EEPH Multi-support soil arsenic concentration in the city of Tou
louse. a) SIC dataset b) EEPH interpolation with Euclidean fields from classes of TPH concentrations, c) EEPH expectation of TPH with optimized LANU covariate, d) 
EEPH expectation of As with surface soil sample only (0–0.1 m), EEPH expectation of As with deeper samples only (0–0.3, 0-1 m), f) EEPH expectation of As multi- 
support in soil (all samples between 0 and 1 m) with geologic covariable. Topsoil samples from Belbeze et al. (2019), n = 139, 0-10 cm, TPH analysis by multiple 
laboratories, LOQ: 10 mg/kg (8 samples), 20 mg/kg (57 samples). Samples from Belbeze et al. (2019), n = 822, 0–0.10 cm, 0–0.30 cm, 0–1 m, As analysis by multiple 
laboratories, LOQ 1 mg/kg (33 samples), LOQ 10 mg/kg (789 samples).
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3.4. Anomaly detection

Anomaly detection is one of the key steps in environmental studies 
and geochemical exploration (Carranza, 2009). An anomaly is an 
observation that falls outside of the range of expected values and 
therefore can be indicative of, e.g., a mining prospect, a contamination 
hotspot or a measurement error. In the latter case, such values are 
dubbed “outliers”. Because there is a large variety of anomaly detection 
methods, some authors suggest it is beneficial to combine some of them 
(e.g., Ballabio et al., 2024). Three fundamental techniques are used to 
detect anomalous values of element concentrations (Lalor and Zhang, 
2001; Zhang et al., 2009): (i) detection on boxplots (‘range outliers’); (ii) 
detection on biplots or multidimensional projections (‘relationship 
outliers’), and (iii) anomalous patches of values (‘spatial outliers’). A 
range outlier is an elevated value that is higher than an anomaly 
threshold. A relationship outlier is a value that does not follow the 
multivariate relation found with the remaining data. A spatial outlier is a 
high value patch surrounded by low values.

In order to build a high-performance detection system, we have 
selected seven methods to identify anomalies of range and spatial out
liers. One method involves applying an anomaly threshold as described 
by Reimann et al. (2018), utilizing quantile 95 (Q95), quantile 98 (Q98), 
and the Tukey theoretical percentile (Tukey Inner Fence, or TIF) as 
effective tools for detecting anomalous values. Another technique in
corporates Zero Probability Bands as employed in Belbeze et al. (2019), 
where the multidimensional space of results, referred to as a 

mathematical manifold, is projected into two-dimensional views. In this 
representation, populations appear as balls or clusters, with outliers 
gravitating around them and being manually selected. What distin
guishes outliers from populations in this approach is the presence of an 
empty space in the projected space. This inspired the idea of identifying 
spatial populations within a band of zero probability or, alternatively, 
locating a plane that separates the populations into two distinct regions. 
To achieve this, a support vector machine (SVM) algorithm, as intro
duced by Vapnik (1995), is employed.

On a neutral EEPH interpolation map that magnifies anomalies 
before applying algorithms, the C-A fractal, as suggested by Carranza 
(2009), is used in the context of fractal theory as proposed by Cheng 
(1999a, 1999b). This model aligns with the theory of concentration 
variations by area as a function of concentration, acting as a refined 
technique to separate geochemical background from anomalies based on 
the anomaly surface, with the background assumed to dominate the 
collected data. Using EEPH as the baseline, it becomes feasible to plot 
multiple C-A curves corresponding to calculated quantiles, thereby 
validating the technique's conclusions. Additionally, the singularity 
index, as described by Xiao et al. (2016), is derived within the frame
work of fractal theory and is computed using a sliding window 
approach. Furthermore, the local Moran index, based on Anselin (1995), 
shares similarities with the variogram of geostatistics and is notably 
sensitive to deviations from data normality. It is typically calculated on 
values transformed by methods such as Box-Cox or normal score, using a 
predefined neighbourhood distance, as noted by Zhang et al. (2009). All 
clustering methods exhibit sensitivity to anomalous values, which pre
dominantly occupy most of the identified clusters. As a result, clustering 
can be conducted in a manner where the initial outputs highlight 
anomalies. For the ISLANDR project, an effective spatial clustering 
method commonly employed in brain imaging, known as spatial fuzzy 
C-means (SFCM), was adopted based on the work of Cai et al. (2007) and 
Zhao et al. (2013). This method was implemented using geocmeans, an R- 
based application developed by Gelb and Apparicio (2021), which 
demonstrates strong performance on large PC configurations. Addi
tionally, the Nemerow index, also referred to as ratios, enrichment 
factors, or response factors, is a prevalent tool in geochemistry due to its 
simple design and minimal underlying assumptions. This index typically 
involves identifying a geochemical background in deep soil or nearby 
controls and measuring its enrichment using a ratio, with interpretation 

Fig. 17. Metal(oid) anomalies (43) in ITA3, 138 surface samples, as pinpointed by the IISDIA detection algorithm. This map highlights the contamination of highly 
urbanized areas. This observation is consistent with the presence of historic urban anthropogenic deposits.

Table 4 
Metal(oid) anomalies in ITA3 as located on 1950s aerial surveys.

Anomaly n◦ 1950s Aerial Survey

10,43,38,40,7,32,31,33,28 Large ammunition factory
42 Waste disposal and/or fire test of ammunition Factory
27 Waste disposal proximity
36,29,15,16,17 Backfilled areas
39 Old railway facilities
8,9,4,30,1,26,13 Agricultural
34 Agricultural with traces of spraying
5,25,14,23 Old buildings
3,6 Gardens near main river
24,18,12,41,20,21,35,2 City Parcs and green zones
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criteria varying based on the index's construction methodology.
By maintaining and applying these techniques to datasets, the 

detection algorithms will behave like a panel of experts whose consensus 
can be sought. Anomaly detection tests were conducted on the GEMAS 
dataset (Tarvainen et al., 2013) with seven techniques, which all pro
duced informative maps (see Supplement 1). Each point is associated 
with seven anomaly descriptors, which are as many criteria, denoted C1, 
C2, …, Cn. The criteria are partitioned using a 5-item Likert scale (Likert, 
1932) fuzzification (Table 2).

Tested on real datasets, each technique has its own advantages and 
disadvantages that must be considered. This uncertain information can 
be modelled using, e.g., triangular fuzzy numbers (Bouchon-Meunier 
and Marsala, 2003). Since one criterion may be more relevant than 
others, an overall weight of w1, w2, …, wn is assigned to each criterion 
(Table 3). It is a subjective choice made by the authors based on results 
observed on test data sets (Supplement 1). These weights may be subject 
to adjustment according to the degree of sensitivity to strong and weak 
anomalies.

Fuzzy multi-criteria decision-making methods (FuzzyMCDM – 
FMCDM) are then used for classification problems where uncertainty, 
vagueness, and/or imprecision are present in the decision matrix 
(Ceballos et al., 2016, 2018). There are several ways to apply these 
multi-criteria sorting equations to fuzzy numbers, including the VIKOR 
method (Opricovic, 2011), the TOPSIS method (Wang and Chang, 2007) 
and the multi-MOORA method (Baležentis and Baležentis, 2014). By 
construction, the sorting results produced by TOPSIS and multi-MOORA 
are generally similar, whereas those produced by the various VIKOR 
variants show variability. In a way, this variability reproduces the nat
ural variability of expert responses to criteria questionnaires. In this 
way, the consensus can be reproduced by a majority vote pass, known as 
meta-ranking.

4. Experiments and results

In this section, we describe the computational experiments per
formed to assess our EEPH and anomaly-detection methods on two 
synthetic dataset and three real datasets.

4.1. Core sample from Dahlberg (1975)

To refine these algorithms and illustrate their effects, a dataset of 
core samples from Dahlberg (1975), with only 13 data points, was 
adapted as a basis for working with small numbers of imprecise data 
points (Fig. 9a). With this type of dataset, it is impossible to construct a 
variogram and therefore to perform any sort of kriging. The EEPH was 
tested on this dataset to visually evaluate the EEPH against manual in
terpretations (Fig. 10b). Specifying an anisotropy in the EEPH interpo
lation of the 13 data points allows us to recover the two possible 
interpretations made by geologists on this dataset (Dahlberg, 1975; 
compare Fig. 9c and d to Fig. 110b and 10c). It should also be noted that 
the map produced with altered range (Fig. 10a) is equivalent Dahlberg's 
manual smoothing (Fig. 9b). The calculation on the 13 datasets 
(Dahlberg, 1975), four of which have been censored at 7 m thickness 
(LoQ; limit of quantification), is shown in Fig. 11. This figure shows the 
strong effect of <LoQ values on mapping. The expected value calculated 
by EPH decreases, reflecting the wide spread of the probability density. 
Similarly, our content may be affected by uncertainty, usually expressed 
as a relative percentage ± E, for example a Sand (S) content of 5 m ± 10 
%. The values therefore fall within a high-low range, calculated using 
the relative error, which can vary from sample to sample. To remedy this 
while adding a minimum of assumptions to the calculation, as for the 
LoQ problem we propose a discretization approach. The concentration 
range is replaced by m discretized values (regularly sampled along the 
interval, 0 - LoQ) between high and low range, each yielding an EEPH 

Fig. 18. EEPH Colour surface Continuous map of As with geological covariable. Numbered anomalies as in Tarvainen et al. (2013). GEMAS Survey, Ap (0–20 cm), <
2 mm, n = 2217, 1 site/2500 km2, aqua regia, ICP-MS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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calculation, then an agglomeration with a weight qk that is equal to its 
probability of occurrence. In this case, the draw is based on a uniform 
distribution to avoid giving the uncertainty any particular shape. 
Nevertheless, the algorithm is still compatible with a possibilistic 
approach, and the error distribution could take many shapes. As un
certainty increases, the expected value calculated by the EEPH de
creases, reflecting the spread of the probability density under the effect 
of uncertainty (Fig. 11b). While the maps presented here are expecta
tions, at any time quantiles can be extracted from the spatial probability 
tensor or the spatial cdf tensor (Fig. 11c). In fact, it is possible to 
construct fuzzy numbers or possibilities for each pixel (Fig. 12). The 
Fig. 13b shows a dataset of HYRISK inputs for our dataset of thirteen 

core samples. It is purely hypothetical and serves only to demonstrate 
that, through expertise, core loss measurement, and representativeness, 
the measurement distributions can be specified as possibilistic priors. 
Once the data has been imported, the HYRISK version of the EEPH 
calculates the expectation or probability distribution, based on the 
probability-possibility distribution of the content at each point. When 
compared with previous figures for the same site, this Fig. 13a shows the 
strong influence of the hypothesized uncertainty on the sand deposit's 
overall structure.

Fig. 19. a) Anomalies in GEMAS As Ap samples as pinpointed by Reimann et al. (2018) and b) IISDIA detection algorithm. GEMAS Survey, Ap (0–20 cm), < 2 mm, n 
= 2217, 1 site/2500 km2, aqua regia, ICP-MS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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4.2. The spatial interpolation intercomparison test (SIC2004)

It is possible to situate EEPH in its neutral version in relation to other 
techniques without taking uncertainty into account, applying it to 
complex intercomparison datasets such as SIC2004 (Dubois and Gal
marini, 2005). This test, designed for emergency mapping of radiolog
ical incidents, has a dataset of 1008 data points from which 200 training 
values were extracted (Dataset 1), and another dataset of 1008 data 
points where a radiological incident “anomaly” was added before 
extracting the training (Dataset 2, designated as the “joker dataset”). 
Various more-or-less automatic techniques were then tested by the 
participants to estimate the 808 remaining from the 200 and their 
respective deviations from the mean. The trials were statistically 
analyzed in relation to this objective, and an overall indicator was 
created by adding up the scaled deviation statistics. This test is useful for 

comparison with the EEPH methodology because it requires fast, neutral 
interpolation without covariates, Also, the joker dataset has a radio
logical background, is a natural dataset, and is not derived from a model. 
The joker dataset presents an anomaly within the background, that must 
be identified (an objective of the ISLANDR project). The test as carried 
out at the time focused only on the restitution of the mean in the pres
ence of the outlier.

Among the participants in the SIC2004 intercomparison test, two 
apply methods that are related to the proposed EEPH: one uses de
viations between measurements instead of EEPH distances (Fang, 2005) 
and another uses a neural network equipped with a Nadaraya-Watson 
Kernel (Timonin and Savelieva, 2005), which also takes the prize with 
its overall score. Nevertheless, with 200 structured data points, these 
datasets are neither sparse nor clustered, which does not favour EEPH (it 
only delivers its full power if n < 50), but they do highlight its role as an 

Fig. 20. a) Anomalies in GEMAS FRANCE As Ap samples as pinpointed by IISDIA algorithm and background maps used in interpretation based on mining prospect 
anomaly databases (Billa et al., 2016), b) a simplified lithology digital geological map (https://infoterre.brgm.fr/), c) Heavy metals in moss survey result (Harmens 
et al., 2010), and d) EEPH of dust measurement from Targa et al. (2023). Selected France GEMAS Survey, Ap (0–20 cm), < 2 mm, n = 2217, 1 site/2500 km2x, aqua 
regia, ICP-MS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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anomaly enhancer and its extremely fast and reliable mapping 
capabilities.

The tests were conducted with EEPH in a moving window of 10 
neighbors to anticipate any non-stationarity, and with sub-second 
computation time (0.15 s for 808 interpolations for Dataset 1 (Fig. 14) 
and 1 s for Dataset 2 with anomaly detection (Fig. 15) on a portable PC 
i5. The formal results for Dataset 1 yield a score of 26, very close to the 

24–25 obtained by experts in geostatistical modelling (note that, for the 
experts, the outliers are removed and the covariance or structure is 
determined by a human). On the dataset with the joker outlier, the score 
is not as good (120), but this is the desired effect for the neutral EEPH: to 
move away from the endless calculation of the mean and amplify the 
data just enough to find the anomalies we are looking for (Fig. 14).

4.3. Topsoil samples from the TOULOUSE metropolis (Belbeze et al., 
2019)

Toulouse metropolis is located in the Haute-Garonne department, in 
the Occitanie region, southern France. It is one of 20 largest French 
metropolises, with an intercommunal structure and is focused on the 
city of Toulouse. Toulouse Metropolis was chosen as a pilot agglomer
ation to demonstrate the operational feasibility and provide support for 
the methodology for excavated soil reuse. Analyses of surface soils 
sampled in schools (40 samples) were supplemented by samples ob
tained during potentially contaminated site diagnostic studies (1442 
samples) commissioned by the Metropolis, and during two additional 
sampling campaigns carried out by BRGM. The latter campaigns resul
ted in the collection of 138 high-quality surface soil samples and 100 
deep soil samples taken every meter in 20 m-deep boreholes. Sampling 
density was approx. One sample per km2 (Fig. 16a). Analyses covered 24 
parameters: metallic trace elements, PAHs, total cyanides, phenol index, 
PCB, BTEX, Sum of light hydrocarbons C5 –C10 hydrocarbons, sum of 
C10-C40 hydrocarbons and dioxins; see Belbeze et al. (2019) for more 
information. We consider the results for Total Petroleum Hydrocarbon 
(TPH), which are sparse, imprecise and clustered. This real-world SIC 
dataset is therefore useful for assessing the algorithm's self-learning 
potential in terms of spatial range. The main contributors to surface 
soil concentrations in the city are road traffic and polluted sites.

A first test was carried out using EEPH in autovariography mode. For 
SIC data such as this, results appear less convincing, displaying char
acteristic circular bullseye profiles (Fig. 16b), when compared with an 
EEPH with optimized covariates (Fig. 16c). This phenomenon is linked 
to the small amount of data (sparsity). It is interesting to note that ex
perts tend to impose a continuous covariance function on their data, not 
because the natural covariance is continuous, but because it is necessary 
for the calculation. Nevertheless, this type of calculation makes it 
possible to visually observe the sampling gaps between the various 
circles of influence. Furthermore, we will see in EEPH continuity pro
cessing (Fig. 16c), when the concentration variation is genetically linked 
to a known covariate such as land use, that EEPH captures the data 
structure on this covariate. There is no need for autovariography. If we 
want to estimate the soil content of the first metre of the city, we need to 
mix various samples taken from the surface (Fig. 16d) and at depth 
(Fig. 16e), enabling us to test the EEPH in multi-support mode (Fig. 16f). 
This mapping is consistent with the geochemical background of the area 
as calculated with conventional methods by Belbeze et al., 2019.

Finally, we tested the anomaly ensemble prediction on all metals and 
metalloid from surface analyses and obtained the Fig. 17.

Examining this figure shows that when a sample is taken from a 
known remediated or polluted zone, it detects it as an anomaly. If the 
polluted zone is not covered by a sample, it is not detected, as the notion 
of scale survey does not allow it to be seen. Nevertheless, new zones 
have been identified compared to Belbeze et al. (2019) and merit further 
verification using historical databases. As shown in Table 4, the city 
deconstructs and rebuilds on itself, preserving in some of its soils trace 
pollutants from the past.

4.4. GEMAS Project (Tarvainen et al., 2013)

The GEMAS dataset is a harmonized geochemical dataset of agri
cultural soil throughout Europe gathered by the Association of Geolog
ical Surveys of Europe (EuroGeoSurveys) in cooperation with 
Eurometaux in 2008. The average sampling density was 1 sample from a 

Table 5 
Arsenic (As) anomalies in GEMAS France data.

Map number
Anomaly type

T24 Mineralization/geology; Armorican shear zone 
with As, Sb, Au mineralizations

T25, i5, i6, i8, i9, i3, i7 Mineralization/geology; from SW to NE: Permo- 
triassic sandstone enriched in As (unconformity), 
black marl of Middle Jurassic enriched in As 
(disseminated sulphides), albo-cenomanian 
contact: glauconitic sandstones and black marls 
and chalk enriched in As

T26 Geology/mineralization; partly inherited from 
the Hercynian per-granitic mineralization (W, 
Cu, etc.) and late tectonic sulphide veins but also 
As in Jurassic black marls

T27 Mineralization/geology; As, Co, U vein type 
mineralization and main shear zone (SW 
Armorican)

T28 Geology; Hercynian granite in Jurassic black 
marls

T29 Geology/mineralization; Argentat deep fault, 
perigranitic thermal aureoles and epithermal 
mineralization in the Auvergne quaternary 
volcanics

T30 Mineralization/mining; As anomalies related to 
the La Baume (Pb–Zn) and Carmaux (Coal) 
abandoned mines

T31 Mineralization/geology/anthropogenic; the NW 
part is clearly related to the major 
gold–arsenopyrite deposit of Salsigne 
(mesothermal gold) and the SE part is related to 
pesticides used in orchards and vineyards

i2 Mineralization prospect; ranked A1; Fe-TI; Virton
i28 Mineralization prospect; ranked A1; W-(Ba); 

Fustugères
i20 Mineralization prospect; ranked A1; Cu-Co-Ni- 

Pb-Zn; Beaujolais
i18 Mineralization prospect; ranked A2; W-(As–Pb)
i35 Mineralization prospect; ranked A2; Co-Zn-Ni
i7 Mineralization prospect; ranked A3; Ni-Cr-(Zn)
i14 Mineralization prospect; ranked A3; As
i16 Mineralization prospect; ranked A3; As-Ba
i21 Mineralization prospect; ranked A3; Pb
i22 Mineralization prospect; ranked A3; As–Pb
i23 Mineralization prospect; ranked A3; Cr-(K–Ba)
i26 Mineralization prospect; ranked A3; Ba
i31 Close proximity with mineral prospect; ranked 

A3; As-Ag
i1 Anthropogenic possible in a forest which was an 

agricultural field in 1950's
i3, i36 Anthropogenic near big city
i4 Anthropogenic possible steelmaking and 

metallurgical processing
i10, i11, i12, i13, i15, i17,i19, 

i24,i25, i27, i29,i30, i32, i33, 
i34

Possible Anthropogenic with diffuse proximity to 
cities, land spreading, pesticides or other unknow 
causes

I27, i37 Possible anthropogenic related to pesticide in 
vineyards or orchards as seen in the 1950's

Notes: Priority 1 (noted A1) anomalies are already known and have been the 
subject of additional investigation during the inventory. However, metals 
currently being investigated may warrant a reassessment of their potential. 
Priority 2 (A2) anomalies are often less well-known and would warrant further 
field checks and re-sampling or re-analysis for those that have been the subject of 
past geochemical analyses. Priority 3 (A3) anomalies are often associated with 
non-strategic metals (such as Pb–Zn) with a geological environment that gives 
little chance of finding large accumulations at depth.
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50 × 50 km grid cell and sampling depth was 0–20 cm. Arsenic (As) 
concentrations in European agricultural topsoils (Ap – ploughing soil 
layer) have been analyzed using aqua regia extraction of the <2 mm size 
fraction. For more information, see Reimann et al. (2014a, 2014b). Al
gorithms were developed and tested on the European Community's 

large-scale GEMAS survey using a moving window so that a small data 
set (SIC) was processed. The GEMAS Ap measurements for arsenic are 
particularly noteworthy. Tarvainen et al. (2013) identified 52 anomalies 
for EU including 7 for France that can be tested against the IISDIA al
gorithm. Most of the identified anomalies originated from geogenic 

Fig. 21. IISDIA detection algorithm as applied to GEMAS Survey, Ap (0–20 cm), < 2 mm, n = 2217, 1 site/2500 km2, aqua regia, ICP-MS. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

S. Belbèze et al.                                                                                                                                                                                                                                 Journal of Geochemical Exploration 279 (2025) 107868 

18 



sources. Thus, if the EEPH of arsenic levels is calculated with geological 
information reduced to a 10 km grid as parameter, we obtain the map 
presented in Fig. 18, which presents an improved continuity that is 
remarkably congruent with the anomaly marking carried out by Tar
vainen et al. (2013).

This map is not as smooth as the usual maps, such as KED and GWE, 
but it is a map showing all the anomalies (no data has been discarded) 
and with minimized underlying assumptions. Geologists will note that 
the shape of the anomalies matches the orientation of the layers and 
fractures. It is also worth noting that the anomalies identified by Tar
vainen et al. (2013) and Reimann et al. (2018) are included (Fig. 19), as 
well as new low-signal anomalies, the detection of which is one of the 
main objectives of the ISLANDR project.

For France (Fig. 20), data interpretation is facilitated by several 
sources of information: a comprehensive mining prospect anomaly 
database (Billa et al., 2016); a polluted and remediated sites database 
(Darmendrail, 2003); a simplified lithology digital geological map of 
France (https://infoterre.brgm.fr/), heavy metals in a moss survey 
(Harmens et al., 2011), and dust measurement from Targa et al. (2023). 
It is then possible to propose a first interpretation of the 17 new low- 
level anomalies detected in addition to the already 20 anomalies from 
Reimann et al. (2018).

The IISDIA algorithm allowed us to detect twelve (12) major arsenic 
mineralizations, three (3) prospect mineralization ranked A1 (already 
known and needing re-assessment), two (2) ranked A2 (less well-known 
and needing field-check) and eight (8) A3 (non-strategic). The remain
ing 20 anomalies cannot be explained by the extensive geological 
knowledge of the French territory and seem to be associated with an
thropic contamination linked to dispersion from agriculture, backfills 
and pesticides, especially in vineyards and fruit tree orchards. Compared 
with previous studies (Tarvainen et al., 2013; Reimann et al., 2018), the 
proposed algorithm enables the detection of new arsenic anomalies in 
the GEMAS France data, including 20 new ones that could come from 
the diffuse anthropogenic background (Table 5). This example illus
trates the performance of the proposed IISDIA algorithms on a large- 
scale survey of agricultural arsenic levels such as GEMAS.

5. Conclusions and perspectives

We propose an innovative interpolation and anomaly detection al
gorithm especially adapted to cases where data is sparse (〈30), clustered 
and/or uncertain (Fig. 21). Because one of the main objectives of the 
proposed algorithm is to detect anomalies in spatial data, it avoids the 
«smoothing» effect of more classical methods such as kriging with var
iograms and unlike kriging and other deep-learning algorithms, the 
proposed IISDIA algorithm can function with small datasets (on the 
order of, e.g., 10 data points). The proposed algorithm is currently under 
development to allow additional capabilities, e.g., detect stream sedi
ment geochemical anomalies, carry uncertain information for mea
surements in three dimensions, trace complex pollutant patterns and 
help build geological models. This research also focuses on the issue of 
epistemic uncertainties in practical situations faced by geologists and 
geochemists.

With SIC data, there is little chance of knowing the true joint dis
tributions. As for any model, we must therefore be cautious regarding 
the parameters we introduce. Compared to kriging (Berton, 2018), EEPH 
shows superior performance in the case of sparsely-sampled phenomena 
(typically n < 30). Kriging has been shown to work best when there is a 
significant amount of data available (generally speaking, any weighted 
sum of neighbouring content tends on average towards the true mean 
value when n is large—the so-called law of large numbers, and the de
pendency between data depends only on the distance between points). 
With the proposed IISDIA algorithm, which is focused largely on 
anomaly detection, we avoid (i) attributing false continuity to available 
soil pollution measurements and (ii) smoothing the data. A recom
mended approach for mapping sites is therefore to first examine the data 

and the associated variogram or other spatial measures, to see if kriging 
or machine learning algorithms are applicable. If not, EEPH is a viable 
alternative. It is reminded that EEPH makes no assumptions regarding 
data variability, particularly in terms of continuity and is sensitive to 
outliers, which it magnifies. The possibility of inserting uncertainty 
treatment and optimization into EEPH are promising and will be pur
sued. Also, it may be possible to improve covariate and Dirac function 
propagation, using proper entrogram (directional entropy propagation 
estimator) management (Bianchi and Pedretti, 2018).
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Halamić, J., Haslinger, E., Hayoz, P., Hoogewerff, J., Hrvatovic, H., Husnjak, S., 
Jähne-Klingberg, F., Janik, L., Jordan, G., Kaminari, M., Kirby, J., Klos, V., 
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