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I. Présentation du résultat 

 
Prenons un groupe de 10 000 personnes, à parité égale : 5 000 H et 5 000 F, et choisissons au 

hasard 5 000 personnes dans ce groupe : elles vont constituer le groupe A et le reste 

constituera le groupe B. 

  

Beaucoup de gens pensent que les groupes A et B auront aussi la même parité H/F. Ceci est 

radicalement faux ; les lois de la Nature font en sorte que les deux groupes auront des effectifs 

différents. Voici un exemple de résultat, sur 20 répétitions ; à chaque fois, 20 fois de suite, les 

10 000 personnes sont réparties entre deux sous-groupes de 5 000. On note à chaque fois le 

nombre d'H dans un groupe. 

 

 
 

groupe 1 groupe 2 différence

5 012 4 988 24

5 076 4 924 152

4 896 5 104 208

5 032 4 968 64

4 904 5 096 192

5 019 4 981 38

5 003 4 997 6

4 995 5 005 10

5 033 4 967 66

4 928 5 072 144

4 954 5 046 92

5 039 4 961 78

4 946 5 054 108

4 908 5 092 184

5 071 4 929 142

5 018 4 982 36

4 908 5 092 184

4 958 5 042 84

4 882 5 118 236

4 990 5 010 20
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II. Fondements mathématiques 
 

On dispose d'une variable aléatoire X  qui peut prendre les valeurs 1  avec probabilité 1/ 2.  

 

On fait N  tirages de la variable. On note Y  la variable aléatoire qui indique la différence, en 

valeur absolue, entre le nombre de "+" et le nombre de "-". Le résultat est le suivant : 

 

Théorème. – L'espérance de la variable Y  vérifie : 

 

( ) 2

2

2
2

N

N
N N

E Y N


 
 =
 
 

  lorsque N→+  

 

Démonstration du Théorème 

 

Si X  prend k  fois la valeur 1,+  et donc N k−  fois la valeur -1, la variable Y  vaut 

( ) 2k N k N k− − = − , et ceci avec probabilité 
1

2
k N

N
p

k

 
=  

 
. On s'intéresse à l'espérance de .Y  

On peut évidemment supposer N  pair : 2 .N n=  

 

Il est évident que les valeurs prises et les probabilités sont symétriques par rapport à la valeur 

médiane n  : lorsque k  passe de 0 à ,n  la différence Y  décroît, de 2nà 0, et la probabilité 

croît, de 
21/ 2 n

 à 
2

21

2 n

n

n

 
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 

. Lorsque k  passe de 1n+  à 2 ,n  c'est l'inverse. Il suffit donc de 

considérer la première moitié : les valeurs prises sont 2 2 ,ky n k= −  avec probabilité 

2

21
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k n
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p

k
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L'espérance vaut : 

 

( ) ( )
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2 2 2
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2 21 1
2 2

2 2

n n

n n
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E Y n k n k
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Calculons d'abord : 

 

0
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On sait que : 
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et que : 
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Donc : 
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et : 
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enfin : 
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Calculons maintenant : 
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et avec 1j k= − : 
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On raisonne comme précédemment : 
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Les deux sommes sont égales ; par conséquent : 
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et : 

 
2 12 nB n −=  



4 
BB Répartition aléatoire entre groupes, 2026/01/15 

 

On obtient : 
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et finalement : 
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On peut facilement trouver un équivalent, lorsque N  devient grand en utilisant la formule de 

Stirling :  
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On obtient : 
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ce qui prouve le Théorème. 


