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Summary 

 

Where to put the monitoring points in a system is a very common problem (environment, in-

dustry, health, and so on). We show that Archimedes maps, that is, measure preserving trans-

formations, provide the right tool for this problem. Conversely, we insist that random explora-

tion, often preferred because of simplicity and low cost, should definitely be avoided. 

 

 

**** 

I. Presentation 

 

Many of our contracts, both in industrial or environmental situations, deal with the following 

type of question: one wants to define "monitoring points" in a system (simple or complex) and 

one wants to know where to put them. Or, if the system has been already defined (for histori-

cal reasons), people want to know what its degree of validity is. Examples are: 
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− Where to put 10 stations for monitoring water quality on a river? This is a one-dimensional 

problem. 

 

− For France, where to put 300 stations for air quality surveillance? This is a two-

dimensional problem. 

 

− For the Paris area, where should the firemen put their basis stations (these are the places 

where the vehicles stay, before they are called for fires or assistance to victims)? This is al-

so a two-dimensional problem. 

− Where to put temperature sensors in a nuclear reactor? This is a 3-dimensional problem. 

 

− Assume we have a computational code, depending on 40K = parameters. We want to iden-

tify say 500N =  situations which we will call "generic" or "characteristic", in the sense 

that we feel that with these N  situations we can have a good idea of what the code pro-

duces in general. Where to put these situations? This is a K dimensional problem. 

 

The general approach for these problems is: people choose these monitoring points at random. 

This approach is quite wrong. Indeed, when the resources are scarce and costly, as it is always 

the case in practice, one should think about the best way to use them, and one should not rely 

upon a random approach for that. For instance, if one wants to set relays on the highway be-

tween Paris and Lyon (for food or for gas), the best is to set them at equal intervals, certainly 

not to choose them at random. 

 

We will follow Archimedes' approach (see [BB_Archimedes]) in two aspects : first, we will use 

regular subsets in order to dispose our monitoring system, and second, we will show that a 

monitoring system put on a simple space may be lifted to a more complex one (for instance, as 

he did from a disk to a sphere). This should apply as well to high dimensional settings. 

 

II. Covering with balls 

 

Mathematically speaking, the problem can be stated as follows : we have a set in a K  dimen-

sional Euclidean space, and we want to place N  balls such that the reunion of these balls co-

vers the set. Each ball, indeed, corresponds to the "radius of surveillance" of each sensor or 

resource. 

 

For instance, for the firemen, this radius corresponds to the area which is under the jurisdic-

tion of any of the basis stations. 

 

This radius is sometimes given (we know that the device is capable of detection or action for 

instance to a distance of 10 km) or sometimes part of the problem, as it is the case for the 

firemen problem, but also for the computational code in the last example above. 

 

Usually, the number of points is given, for reasons linked with the budget: we cannot afford 

more than X stations, and the question is: where to put them? If we have too few stations, 

with a range of activity which is too short, then obviously we cannot monitor the whole territo-

ry, but the problem remains: where should we put the equipment to use it at best? 
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The distance to be used is also not clear. For environmental purposes, one will use the usual 

Euclidean distance, which is the true geographical distance. But if one wants to study the 

neighborhood of a configuration in a computational code, it might better to use the maximum 

distance : two situations ( ) ( )
1,..., 1,...,

,k kk K k K
X Y

= =
, will be close if for each ,k  

k kX Y −  . 

 

Such problems are related to the branch of mathematics called "Operations Research", but the 

tools brought by OR are often academic : it brings optimal solutions when all constraints and 

cost functions are available and well-defined, and this is never the case in practice. 

 

III. Best strategy in practice 

 

A. Type of covering 

 

In practice, the best strategy for defining the surveillance points is as follows: 

 

− Cover the territory by squares (or cubes, or hypercubes) of equal size, obtained from a reg-

ular covering. For instance, this means that the territory of France will be divided into 

squares of equal height and width (equal latitude and longitude).  

 

− Take the center of each square and put a surveillance point at this place. 

 

− Replace the square by a ball, with same center, enclosing the square. 

 

In this approach, the size of each square is chosen according to the sensibility of each sensor. 

For instance, if a sensor has a range of 10 km, then the square will have a size of 10 2 km (in 

dimension 2). 

 

Proceeding that way, we are sure to cover the whole territory, because the squares already 

covered, and the balls are bigger. But of course, there is some overlap between the balls, so one 

may have the feeling that this solution is not optimal. This is indeed the case, but in low di-

mension the area which is lost is not large. Indeed, in dimension 2, if the square has size a , 

its area is 
2a  and the disk has radius 

2

a
 and area 

2

2

a
, so we have lost a factor 

2


 between 

the disk and the square. 

 

In high dimensional situations, the loss is much bigger. Indeed, take a cube of side a  in a K  

dimensional space. The radius of the enclosing ball is 
2

a
R K= , and the volume of this ball 

is: 

 
/2

( )

!
2

K K

R

R
vol B

K


=

 
 
 

   (for even K ) 
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and the ratio with the volume of the cube is: 

 
/2/2 /2 1

2
2 !

2

KK K

K

K e
ratio

K K

 



 
=   

   
 
 

 

 

using Stirling's formula. We see that this ratio increases exponentially with the dimension.  

So, we do not have an optimal covering, starting with cubes and then converting them into 

bigger balls, but there is usually no other way to obtain the covering, except in simple situa-

tions. For instance, if our set is itself a ball, there are much better coverings, using smaller 

balls (see for instance [VERGER-GAUGRY]). But such a simple situation is seldom met in 

practice. 

 

B. The number of points to be used 

 

We observe that, in order to cover a cube in dimension K , one should use a number of smaller 

cubes which is obtained from a division on each axis, so it will necessarily be of the form 
Kx .  

 

There is no other way to do it ; if we take a number of smaller cubes which is not of the form 
Kx , then it cannot cover the large cube. In order to see this, take for instance a cube of size 1 

in dimension K , and take smaller cubes of size 1 − , for any 0  . No matter what the di-

mension is, you can never cover the first one by less than 2K
smaller ones. Indeed, the reunion 

of 2K
 cubes of size 1 −  is a cube of size 2(1 )− , the points of which are defined by the ine-

qualities : 

 

0 1kx   −  or 1 2(1 )kx −   −  

 

and all these inequalities are satisfied by some extreme point of the unit cube (which have 

coordinates 0 or 1) ; this means that if you remove any of the 2K
 smaller cubes, one of the cor-

ners of the unit cube will not be covered anymore. 

 

So, in practice, this means that if you want to cover some cube in dimension K , you should 

always use a number of surveillance points of the form 
Kx , for some x  depending on the pre-

cision of the sensor. Using other numbers is useless, unless you accept the idea that some part 

of the territory is left without surveillance. 

 

Let us now turn to random exploration. Especially in high dimensional situations, random 

exploration should not be done at random! It should obey very precise rules, as we now see. 
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IV. The dangers of random exploration 

 

Many people consider wrongly that, in high dimensional situations, a completely random ex-

ploration is satisfactory. This belief comes from the fact that, in order to compute the integral 

of a function, one simply draws points at random, takes the average value of the function at 

these points, and this average converges to the mean value of the function, when the number 

of random points increases ; this convergence is independent of the dimension. Multiplying the 

average value of the function by the volume of the set, one gets the integral of the function 

over the set. 

 

So, the computation of any integral, no matter how complicated it is, reduces to the determi-

nation of random points, with uniform law, in the domain where the integral takes place. This 

is of course a considerable simplification, though drawing points with uniform law in a domain 

may be quite complicated: this depends on the form of the domain. 

 

The following facts should be emphasized: 

 

− The above statement applies only to an integral, that is to the average of a function. It 

never applies to a max, a min, or any local information. 

 

− The above statement is only asymptotic, when the number of random points tends to 

infinity. This convergence is very slow, and we have absolutely no control about it. In 

other words, for a particular problem, with given dimension and given number of 

points, we have no idea at all of the error, which is committed, approximating the inte-

gral by the average computed upon the random points. 

 

− Different random runs will lead to different answers, making it difficult to compare the 

results: no normalization is possible this way. 

 

We would like to illustrate these warnings with several explicit computations, coming from 

IRSN (Institut de Radioprotection et de Sûreté Nucléaire) preoccupations about the 

CATHARE code:  

 

Fix in the sequel the dimension 40K = . We are working in the hypercube  0,1
K

, which means 

that all parameters have been normalized to vary in the interval 0 – 1. Consider the "central 

ball", that is the ball B with center 
1 1

,...,
2 2

 
 
 

 and radius 1/2 ; it touches the hypercube on all 

its faces and is the greatest ball included in the hypercube.  

 

The volume of this ball is: 

 

/2 20

40

1
( )

2 2 (20!)
!

2

K K

vol B
K

  
= = 

  
 
 
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and an approximate value for this volume is: 

 
20( ) 0.33 10vol B −   

 

Assume you make N runs ; the probability that at least one of them penetrates in B  is : 

 

( )1 1 1 ( ) ( )
N

p vol B N vol B= − −    

 

With 100 000N =  (which is already quite large!), the probability that you penetrate the ball at 

least once is: 

 
15

1 0.33 10p −   

 

which means that, in practice, you have no chance at all that any of your runs will penetrate 

the largest ball in the hypercube. 

 

If now we take the ball with same center, but with radius 1 (this is a ball which is not con-

tained in the hypercube), the same computation gives a probability to enter the ball, in 100 

000 trials: 

 

1 0.00036p   

 

In other words, in practice, all the trials will be at distance more than 1 from the center of the 

hypercube.  

 

Take now a smaller hypercube, say of size 0.7c = , inside the unit hypercube. Its volume is 
Kc  

and the probability to penetrate it at least once, among 10 000N = runs, is : 

 

( )2 1 1 0.0063
N

Kp c= − −   

 

So, here again, though the smaller hypercube seems to be very large inside the unit one, the 

chances to penetrate it at least once are very small. 

 

Let us now show that the random computation of a multiple integral, by means of Monte-

Carlo methods, in high dimensional spaces, may lead to very poor results. 

 

We consider the function: 

 
2 2

1 1( ,..., ) ...K Kf c   =  

 

on the set: 

 

1( ,..., ) ; 0, 1K k k

k

S    
 

=  = 
 

  
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and c  is a normalization constant, such that 1
S

f = . 

These functions are probability densities; with a slightly different terminology, they are called 

"Dirichlet densities", and they are studied in our book "Nouvelles méthodes probabilistes pour 

l'étude des risques" [NMP]. 

 

Take here again 40K =  and 10 000N = .  

 

In order to produce uniformly distributed points in ,S  one proceeds as follows (see [NMP] and 

Luc Devroye [Devroye]): 

 

− Generate K  random variables kX  with uniform law on 0 – 1 ; 

 

− Take 
1

k

k

Y Log
X

 
=  

 
 : they follow an exponential law. 

 

− Compute     
1

;
K

k

k

U Y
=

=   

 

− Set k
k

Y
Z

U
=  : they give uniformly distributed points in .S  

 

We repeat this process N times.  

 

Now, the measure of S is ( 1)!K − , so the quantity : 

 

( ) ( )

1

1
( 1)! ( ,..., )n n

K

n

K f
N

 −   

 

should be close to the integral of the function. But for 10 000N = , the result is in the range 

0.1. 

 

This comes from the fact that the function is too small at most places and has one sharp 

"bump". This bump is too sharp to be detected by only 10 000 points in a 40-dimensional space. 

With 100 000 points, the estimate is roughly 0.45 for this function. Again, it becomes extreme-

ly bad for the function ( )
3

1 1( ,..., ) ...K Kf c   = . 

 

Our recommendations are: 

 

− Use random methods only at the very beginning of a problem, when one knows nothing: 

sending points at random may reveal interesting situations. 

 

− As soon as specific situations are in evidence, use deterministic methods, in order to inves-

tigate them. 
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− In any case, use random methods only to compute averages, never min or max. 

 

V. Archimedes Maps 

 

A. Definition 

 

In a recent seminar about Archimedes' work [BB_Archimedes], we illustrated the fact that his 

techniques lead to the definition of measure preserving maps from a complex situation to a 

simpler situation ; an example was given from a piece of sphere to a piece of disk 

[BB_Archimedes2].  

 

A "measure preserving map" is a map such that two sets of equal measure in the original 

space have same measure in the destination space. Precisely, let 1E  and 2E  be two sets 

equipped with some measures 1m  and 2m  respectively ; we define an Archimedes map as fol-

lows : 

 

Definition. - If f  is a bijective transformation from 1E  onto 2E , it is an Archimedes map if 

2 1 2 2( ( )) ( ( ))m f A m f A= , for any two sets with 1 1 1 2( ) ( )m A m A= .  

 

The measures 1m  and 2m  can be normalized differently : what we require is that two sets of 

equal measures have images of equal measures. We do not require 2 1( ( )) ( )m f A m A= . 

 

B. Archimedes maps as the solution to the surveillance problem 

 

In our first paragraph, we explained that covering a set by regular squares of same size led to 

a simple solution of the surveillance problem, best in practice. But this solution still has some 

drawbacks: 

 

− Some squares overlap the territory, so we use a sensor for almost nothing. 

 

− This covering refers to areas only; it cannot be used if more complex measures are to be 

used. 

 

For instance, assume that we want to draw a map of France, divided into sectors, where each 

sector has the same population, or the same amount of pollution, and so on: the regular cover-

ing will be inappropriate. 

 

Let us take the example of a 2 D territory, France ( F ), and the population problem. We want 

to divide the country into small pieces of equal population.  

 



9 
BB Monitoring and Archimedes maps, 2010/06 

Assume we have constructed an Archimedes map from the unit cube C  to ,F  for the usual 

area measure. Divide the unit cube into 
610  small squares of identical dimensions ; for this,  

we divide each side of the unit square into 1000N =  parts. Using an Archimedes map, trans-

fer these 
2N  small squares 

,i jC , , 1,..., ,i j N=  to the same number of sets 
,i jS  in F : they are 

disjoint (except for the boundaries), they have the same area, and they cover F . 

 

Now, let 
,i js  be the population of the set 

,i jS  ; bringing back these numbers to C , we obtain a 

probability law on C : the probability of 
,i jC  is 

,

,

,

, 1

i j

i j N

i j

i j

s
p

s  

 =

=


. 

From any probability law on C , we can deduce a grouping in zones of equal probability. This 

can be done in an exact way, when the probability law is continuous, in an approximate way 

when the probability is discrete, as it is the case here. 

 

For this, we proceed as follows; the value 0.1 is taken as an example. First, we choose an index 

1i  such that 
1

,

1 1

0.1
i N

i j

i j

p
= =

  (this is an horizontal strip of probability 0.1), and then an index 

2i  such that  
2

1

,

1 1

0.1
i N

i j

i i j

p
= + =

  (this is a second horizontal strip of probability 0.1), and so on. 

So, we have 10 horizontal strips of probability 0.1. Then, inside each strip, we use the same 

process : find fist and index  1j  such that 
1 1

,

1 1

0.01
i j

i j

i j

p
= =

 , then an index 2j  such that  

1 2

1

,

1 1

0.01
i j

i j

i j j

p
= = +

  , and so on. What we obtain is of the following type: 

 

 
 

 

We have horizontal strips, not all of same height, and each strip is made of rectangles, all of 

same height in each strip, but not of same width. Each rectangle is made of a certain number 

of the original small squares. 

 

Let now nR  be an enumeration of these rectangles; they all have same probability, with re-

spect to the probability law associated to the population. Let us send these rectangles to F by 
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means of our Archimedes map, and let nR  be their images. These sets cover F , are disjoint 

(except for boundaries in common), and all have the same population. We have solved our 

problem; cover France by means of zones of equal population. 

 

Let us take a second example of the same nature. We recently had a contract with the Fire-

men Brigade in Paris : they are interested in grouping their assistance vehicles into zones of 

"equal load", meaning that all zones should approximately have the same demand (these de-

mands concern mostly assistance to victims). At present, there are more than 400 small zones, 

of unequal load, and the question is to define a grouping which would be homogeneous. We 

solved this question in an empirical manner, but Archimedes maps would provide the tool for 

a precise solution. 

 

C. More properties for the maps 

 

When a grouping of zones is performed, usually people want two more properties, which do not 

follow readily from the definition we gave about an Archimedes map: 

1. These zones should be in one piece 

 

This comes from practical reasons, since a zone is to be attributed to some surveillance sys-

tem, so one would not be happy if the zone consisted in many small pieces scattered on the 

whole territory.  

 

What this means mathematically speaking is unclear. We might decide that the zones must be 

connected, but they do not need to be connected by arcs (which means that they may contain 

holes).  

 

In the case of the Archimedes maps we construct below, this will be automatic : if two squares 

in C  have a boundary in common, so will have their images in .F  

2. No zone should be too long or too large. 

 

If a zone was very thin and long, such as a narrow band near the sea, the surveillance would 

require many sensors. Therefore, a bound must be given on the possible diameter of any zone 

in F , depending on the diameter of the original zone in C . The simplest condition ensuring 

this is of the form: 

 

( ( )) . ( )diam f Z const diam Z  

 

This condition will also be satisfied on the examples we give below, because they are continu-

ous, with continuous inverse, on compact sets of 
2
 or 

3
. 
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D. Another application of Archimedes maps 

 

Let us mention finally another possible application of Archimedes maps, besides the construc-

tion of zones of equal weight. We may use them to construct points with uniform distribution 

in the destination space, or part of it. For this, in our example above, we construct points with 

uniform distribution in the unit square C  (which is immediate) and send them, using Archi-

medes map, to the destination space F ; the measure preserving property will ensure that the 

images will follow a uniform law also.  

 

In this latter case, properties of connectedness and size of diameter are not required. 

 

VI. Measure preserving maps between simple sets 

 

In his work "On the Sphere and the Cylinder" (see [BB_Archimedes]), Archimedes shows that 

there is a measure preserving map between the half sphere and the disk. Such maps between 

two sets are, in practice, extremely useful as we just saw. 

 

The simplest set, for these purposes, is of course the cube (or hypercube, in higher dimension), 

because all meshes are easy to define, and so is the implementation of random points. So, we 

want to construct Archimedes maps from or onto the cube, whenever possible. 

A. Two dimensional structures 

 

Proposition 1. – There is an Archimedes map, in dimension 2, from the disk to the cube. 

 

Proof. We follow Archimedes method. 

 

 

 

 
 

 

We will show that the sector AOB (quarter of the disk) can be transformed into the triangle 

A'O'B' (quarter of the square), by an Archimedes map. 
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We normalize the following way : the disk has radius 1AO =  and the square has width 

1A B  = .  

 

First, take any point C between A and O, and consider the circle of center O, radius OC. Let 

CD be the corresponding quarter. 

 

 
 

Then the arc CD will be transformed into a straight line C'D'. In order to satisfy the measure 

preserving property, we want: 

 

(sector( )) (trapeze( ))

( ) ( )

area ABCD area A B C D

area disk area square

   
=                                    (1) 

 

Let OC c= . We have: 

( )2(sector( )) 1
1

( ) 4

area ABCD
c

area disk
= −                                                     (2) 

 

For the trapeze, let I' be the middle of A'B' and P' the middle of C'D'; let ' 'h O P= . 

 

 
 

Then the area of the trapeze is: 
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( ) ( )

2

( )
2

1 1

2 2

1

4

A B C D
area trapeze I P

A I C P O I O P

h h

h

   +
 = 

       = +  −

  
= + −  
  

= −

 

 

Since the area of the square is 1, equations (1) and (2) lead to: 

 

2

c
h =                                                                    (3) 

 

Now, let us consider an angular sector of type OIJ , where I  is (on the circle) the middle be-

tween A and B, and J  is any point on the arc AB . Then the angular sector OIJ  is trans-

formed into a triangle :O I J     

 
 

and we want as before: 

 

(sector( )) (triangle( ))

( ) ( )

area OIJ area O I J

area disk area square

  
=                                            (4) 

 

Let   be the angle OIJ . Then: 

 

(sector( ))

( ) 2

area OIJ

area disk




=  

 

Let x I J = . Then: 

 

( ( ))
4

x
area triangle O I J   =  
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So, condition (4) is equivalent to: 

 

2
x




=                                                                   (5) 

 

Combining (3) and (5), we have defined explicitly our Archimedes map, from the disk onto the 

square : a point M in the disk, with OM c=  and ( , )angle OI OM =  is transformed to a point 

M  with 
2

c
O P h  = = , where P  is the orthogonal projection of M  onto O I  , and 

2
M P




  = . 

 

(Here, in his own words, Archimedes would have written "area of the unit disk" instead of  .) 

 

The transformation we have constructed is explicit (it can be programmed in a computer) and 

it is continuous. 

 

B. Three dimensional structures 

 

The same construction can be carried out in three dimensions: 

 

Proposition 2. – In dimension 3, there is an Archimedes map from the unit ball to the unit 

cube. 

 

Proof. The cube has 8 summits. So we first slice it into two, using a diagonal plane, namely 

ABCD in the picture below : this way we obtain two identical prisms, with triangular base. 

Each of them has 6 summits.  

 
  

Now, a prism with triangular section can be decomposed into 3 equal pyramids with triangu-

lar base (Euclid, XII, Prop. 7), as the picture below shows: 
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(picture reproduced from http://www.math.uqam.ca/~tanguay_d/Pdf%20des%20articles/Pyramides.pdf) 

 

Now, each pyramid has 4 summits, and our cube is decomposed into 6 such pyramids. 

 

On the ball, we proceed the same: first we divide the ball into two half balls. Then each cup is 

divided into 3 equal pieces, with equal angles at the pole N : 

 

 
 

 

Here the upper half-sphere ANBC  is divided into 3 equal slices with summit ,N  namely 

, ,ANB CNB BNA . Each slice has 4 summits, so we can proceed. 

 

On each slice, the Archimedes map is built as we did in the previous paragraph. Let us consid-

er the slice NAOB ; it has 4 summits, which are sent to the summits of the corresponding pyr-

amid N A O B    . Then, for the interior points, one proceeds as before: first playing with the ra-

dius, and then with two angles in spherical coordinates.  

 

Playing with the radius is an homothety of center O  ; it transfers to an homothety of center 

O . 

 

If we introduce a point C  on the arc AB , it will transfer to a point C on the segment A B  , 

and we must have the property : 

 

( ( )) ( ( ))

( ) ( )

volume slice ANCO volume pyramid A N C O

volume ball volume cube

   
=  

 

And if we introduce a point D  on the arc AN , it transfers to a point D  on the segment A N  , 

with the property : 
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( ( )) ( ( ))

( ) ( )

volume slice DNBO volume pyramid D N B O

volume ball volume cube

   
= . 

 

The general idea is this: a cube has summits, and a ball does not. So, one should divide the 

cube, in order to reduce the summer of summits, and divide the ball, in order to increase the 

number of summits. For both, this should be done in a regular way: all pieces must have the 

same volume. When this is done, one is able to construct the Archimedes map easily, on each 

piece, as we did before.  

 

We think that the construction above can be carried in higher dimensions.  

 

C. General constructions in two dimensions 

 

In two dimensions, anyhow, the above propositions can be generalized: 

 

Proposition 1. – In 
2
, there is an Archimedes map from any convex compact set with non-

empty interior onto the unit disk. This map is bicontinuous. 

 

Proof. 

 

Obviously, the assumption "nonempty interior" is necessary: there cannot be an Achimedes 

map from a segment onto the unit disk. 

 

Let K  be a convex compact set with non-empty interior, let K be its boundary. Let O  be any 

point in the interior of K . Let   be the closed unit disk, and let O  be its center. The point O  

will be transformed into O . 

 

Let A  be any point of the boundary K  and A  be any point of the boundary   (the unit 

circle). The point A  will be sent to A . 

 

Let  , 0 1.   Let K  be the set obtained from K  by an homothety of center O  and coeffi-

cient  . Let ( )K  be the boundary of this set. The set ( )K  will be transformed into the 

circle C , with center O  and radius   such that : 

 

( )( )

( ) ( )

area diskarea K

area K area disk

 
=


                                                       (1) 

 

where   is the disk with center O  and radius .  

Let now B  be any point of the boundary K ; it will be transformed into a point B  of C such 

that : 
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area sector( ) area sector( )

area( ) area( )

AOB A O B

K

  
=


                                                (2) 

 

Note that properties (1) and (2) are not pointwise definitions. 

 

Now, let M be any point in K . Let  , 0 1   be such that ( )M K  and B  be the inter-

section of K  with the half-line drawn from O , with same orientation as OM . 

 

Then the image of M  is the point Mwhich is at the intersection of the circle C
 (  defined 

by (1)) and the segment O B  , where B  is defined by (2). Both properties ensure that the area 

is preserved: see the Lemma below. 

 

We observe that the Archimedes map thus constructed is continuous and respects segments 

starting at O  : the image of any segment OB  ( B  on the boundary of K ) is the segment O B  . 

 

 

 
 

Remark 

 

The previous proposition does not really require the fact that K  is convex. In fact, a weaker 

assumption suffices, with the same proof. This weaker assumption is that K  is "star shaped", 

meaning that it has non empty interior, and there is a point O  in this interior, such that for 

any point A  in K , the segment OA  is also in K . 
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Lemma 2. – Constructing Archimedes maps 

 

Let K  be a convex compact subset of 
2
 with non-empty interior. Let  be a disk in 

2
. Let O  

be a point in the interior of K , O  be the center of  , A  an arbitrary point on the boundary 

K , A  be an arbitrary point on the boundary  . Assume that, for any point B  on ,K the 

point B  on   satisfies the property : 

 

area sector( ) area sector( )

area( ) area( )

AOB A O B

K

  
=


                                        (1) 

 

Let M  be any point in K  and let B  be the associated point on the boundary K : 

 

Let  , 0 1   such that OM OB= . Define M by OM OB = , where B is defined by (2). 

Then the application M M → is an Archimedes map from K  onto  . 

 

Proof of Lemma 2. 

 

Let 1 2,B B  be any two points on the boundary K ; let ,   any numbers with 0 , 1   , and 

let 1 2 1 2, , ,M M N N  be the intersections of 1 2,OB OB with ( ), ( )K K   respectively (see picture). 

In order to ensure the preservation of the measure, all we have to show is that: 

 

1 2 1 2 1 2 1 2( ) ( )

( ) ( )

area M M N N area M M N N

area K area

   
=


                                         (2) 

 

Indeed, the sigma-algebra generated (by countable unions and intersections) by such "rectan-

gles" is the same as the sigma-algebra generated by all Borel subsets of .K  

 

But property (1) follows immediately from the same property for sectors: 

 

1 2 1 22(sector( ) (sector( ))

( ) ( )

area M OM area M O M

area K area

  
=


                                          (3) 

 

But: 

 
2

1 2 1 2(sector( )) (sector( ))area M OM area BOB=  

 

and: 
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2

1 2 1 2(sector( )) (sector( ))area M OM area BOB   =  

 

Finally, 

 

1 2 1 2(sector( )) (sector( ))

( ) ( )

area B OB area B OB

area K area

 
=


 

 

follows obviously from (1): this proves the Lemma. 

 

D. An example of Archimedes map 

 

This example is due to Stéphanie Premel, during her internship at SCM, summer 2010. It 

shows an Archimedes map of France, divided into four zones of equal population. It is obtained 

from a central point, sending a hexagon to a disk, and back. Of course, we might have more 

than four sectors, and each sector might, in turn be divided into smaller pieces. 

 

 
Archimedes map of France: division into four zones of equal population (Stéphanie Premel) 
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