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In this Fifth Part, we first give a quantitative version of Khinchin's law of the iterated logarithm 

(1924); we then explain the connections and differences with our present work. The comparison 

between Khinchin's methods and ours lead to the following conclusions: 

 

➢ Khinchin's methods may handle the case of a single curve, whereas ours may handle only 

the case of two barriers; 

 

➢ Quantitative estimates, about the probability to reach a certain curve at a certain time, ob-

tained by means of Khinchin's methods are of probabilistic type, and are much weaker than 

similar results derived by means of operator theory; 

 

➢ To say that Khinchin's curve ( ) ( )( )2x xLog Log x =  is a "security curve" is incorrect. 

Take any curve, such as ( ) ( ),b x xLog x=  which is above Khinchin's curve, and take two 

instants 1 2.N N Then the probability to hit ( )b x  between these two instants, and thus to 

go above ( )k x , is always strictly positive. The statement about "security curve" is only as-

ymptotic. 
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I. Khinchin's Law of the Iterated Logarithm: quantitative ver-

sion 
 

Let us come back to the original setting: the nX 's are independent variables with same law, 

( )
1

1 .
2

nP X =  =  We set 
1

N

N n

n

S X
=

=  (in other words, we do not consider only even values of the 

time and, originally, both fortunes are equal). 

 

We introduce Khinchin's curve, or barrier, defined by the equation: 

 

( ) ( )( )2x xLog Log x = , 

 

which is a real function, defined for all real .x e   

 

The classical statement of the law of the iterated logarithm is: 

 

almost surely, 
( )

limsup 1n

n

S

n→+

=  

 

(see https://en.wikipedia.org/wiki/Law_of_the_iterated_logarithm) 

 

The explanation given by Wikipedia, rather obscure, is as follows: 

"Thus, although the quantity 
( )

nS

n
 is less than any predefined 0   with probability ap-

proaching one, the quantity will nevertheless be greater than   infinitely often; in fact, the 

quantity will be visiting the neighborhoods of any point in the interval (-1,1) almost surely." 

 

The difficulty is in the understanding of the words "almost surely", both in theory and in prac-

tice. 

 

There is a natural probability on the infinite product  
1

1,1
n

n



=

− , which is simply the product of 

the elementary probabilities on each layer. With respect to this "global" probability, the words 

"almost surely" are well-defined. But, for this probability, every elementary path has probability 

0, and so does a finite number of paths. Moreover, it is quite hard to obtain quantitative results 

for this probability, which is well-suited only for probabilistic arguments. 

 

On the contrary, if we stop at time ,N  we have a precise and intuitive definition of the proba-

bility of an event: up to time ,N  we have 2N
 paths, and the probability of any event is : number 

of paths satisfying the event, divided by 2 .N
For instance, the probability of the event 

( ) ; nn N S n    is perfectly clear: we count the number of paths for which, at some point, 

the random walk is above the curve, and we divide this number by 2 .N
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Since the paths divide into two at each step, an estimate obtained at a given step will remain 

valid at later stages. For instance, the statement 1 1X =  has the same probability (1/2), no mat-

ter whether we consider it at stage 1 or at any later stage. 

 

Let us observe that the statement from Wikipedia may be quite misleading. Indeed, if one reads: 

"The quantity 
( )

nS

n
 will nevertheless be greater than   infinitely often", this is true for most 

curves, and not only for Khinchin's curve. Indeed, we remember (Part I) that the random walk 

nS  comes back infinitely many times to the x  axis, so for instance the value 0nS =  may be 

expected at time 5000.n =  But then, consider the situation where nS  increases linearly from 

this point; it will eventually cross the curve ( )n  ; in fact, this is true for any curve such that 

( )
0

n

n


→  when .n→+  We construct this way an infinite number of situations in which nS  

exceeds ( )4 n  or any multiple, as one wishes.  

 

Therefore, we think that, in such statements, a precise definition of the probabilities must be 

given. This is what we do now. We give Khinchin's results in quantitative settings, which are 

new, as far as we know. 

 

Theorem 1. Quantitative statement of LIL, 1- Let 0   and 2m  . We set: 

 

( )
( )( ) ( )

1

2 1
,

11
m

mLog
 

 


+
=

−+
 

 

and: 

 

( ) ( ) ( ) ( ) , 1 , 1
m

nB m n S n   =   +  +  

 

Then, for all m : 

 

( )( ) ( ), , .P B m m    

 

The set ( ),B m   is made of the paths which are above the strip ( )1  +  at least once after the 

time ( )1 .
m

+  The Theorem says that the probability of such an event tends to 0 when m  in-

creases. In other words, if we fix a width for the strip, that is 0   fixed, it becomes less and 

less probable to pass above the curve ( )1  +  when n  increases. 

Let us take for example 1. =  Theorem 1 gives the estimate: 

 

( ) 
( )( )

2

2 1
2 , 2

12

m

nP n S n
mLog

   
−

.                                 (1) 
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For instance, if we want the right-hand side to be 0.05,  we find 85.m =  Therefore, the proba-

bility to have 
852n   for which ( )2nS n  is < 0.05. 

 

For a better understanding, this statement may be converted into a proportion of paths, as fol-

lows: 

 

Fix any 
852 .N  The proportion of paths, which satisfy ( )2nS n  at least in one place, between 

852  and ,N is smaller than 5%. 

 

Still, it is quite possible that a significant number of paths reach a curve above Khinchin's. Let 

( )b x  be such a curve; an estimate such as: 

 

( ) 2 ,
2

m

n m

c
P n S b n                                                           (2) 

 

is compatible with (1). 

  

Proof of Theorem 1 

 

Our proof is a quantitative version of the original "Law of the Iterated Logarithm", by A Khin-

chin. We adapt the presentation given by [Velenik].  

 

In what follows, 0   (width of the strip) is fixed, so we omit it from most notation. For easy 

reference, the reader may take 1. =   

 

We need several steps. We recall from Part I, Lemma 2, that, for all 1n  : 

 

( )
1

0
2

nP S                                                           (1) 

 

We also recall from Part I, Corollary 5, that for any real x  and any 1,n   we have: 

 

( ) ( ), 2k nP k n S x P S x                                              (2) 

 

and, from Part I, Lemma IV.1, that for any n  and any ,x  0 x n  , we have: 

 

( )
2

2

x

n
nP S x e

−

                                                       (3) 

 

We define 1 , = +  and, for all 1,k   integer, we set .k

kn = The next Lemma gives an estimate 

on the number of paths which are above the strip at least once, in the interval of time  1, :k kn n +  
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Lemma 2. – Let ( ) 1, ,k k k n kC n n n n S n+=     . Then: 

 

( ) ( )( )2kP C kLog



−

  

 

Proof of Lemma 2 

 

Using (2), we have: 

 

( ) ( ) 
1

2
kk n kP C P S n
+

   

 

and, using (3): 

 

( )  ( )( )
1

2

1

exp
k

k
n k k

k

n
P S n Log Log n

n
 

+

+

 
  − 

 
 

 

Since ,k

kn = 1k

k

n

n
+ = , and we get: 

 

( ) ( )( )( ) ( )( ) ( )( )2exp 2 2k k kP C Log Log n Log n kLog
 

 
− −

 − = =  

 

This proves Lemma 2. 

 

We set ( ) 1, ,k k k nD n n n n S n+=     . We have: 

 

Lemma 3. – For any ,k  .k kD C   

 

Proof of Lemma 3 

 

Indeed, if there exists an n  such that the inequality ( )nS n  holds, we have a fortiori 

( )n kS n , since the function   is increasing. This proves Lemma 3. We deduce: 

 

( ) ( )( )2kP D kLog



−

                                                     (4) 

 

Let 
m k

k m

B D


=  ; then the sets mB  are decreasing when m  increases. The set mB  is by definition: 

 

( )  ( ) 1, , , .m

m k k n n

k m

B n n n n S n n S n  +



=     =     
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Therefore, mB  is the set of all paths which are above the strip ( )n  at least once after time 

.m  We now estimate its probability. 

 

Lemma 4. – For all ,m  we have: 

 

( )
( ) ( )

2 1

1
mP B

Log m
 

 


−
 

 

Proof of Lemma 4 

 

By definition of the sets: 

 

( ) ( )m k

k m

P B P D
+

=

  

 

and Lemma 4 follows from (4) and the inequality: 

 

( )
1 1

1

1 1
.

1k m
m

dx

k x m
 



+
+

+ +
=

−

 =
−





  

 

The proof of Theorem 1 is complete. 

 

We come back here on what we said about the definition of probabilities. In all the statements 

above, up to Lemma 5, all probabilities refer to a bounded interval for n  (for instance 1kn n + ). 

This is not the case for Lemma 6 (
mn  ), but we immediately have an upper bound from 

bounded intervals, deduced from (3). 

 

We now turn to the opposite theorem: many paths enter the given strip. More precisely, let 

0   (small). We will show that there is 0( , )N    such that if ( )0 ,N N   , then:  

 

( )
1,... ; 1nS

P n N
n

 


 
 =  −  
 

. 

 

The statement is as follows: 

 

Theorem 5. – Let 0, 0.    Set 
2

16
,


=

( )( )
2

2
4.2

2Log
 =  , 

( )
( )0

2
1 2

Log
k

Log



 

 
= + + 

 
  and  

2

2
0 0

2

2
N k Log

 



  
= +  

  
. For any 0N N , we have: 
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( )0, , 1 1 .kS
P k k k N such that

k
 



 
    −  − 
 

 

 

What this statement says, in simple words, is that it is more and more unlikely to stay con-

stantly below ( ) ( )1 x − . For a fixed width ,  the probability that nS  enters, at some time, the 

strip ( ) ( ) ( )1 ,x x  −    tends to 1 when .n→+   

 

Proof of Theorem 5 

 

We set as before ( ) ( )( )2n nLog Log n = . Let 0   : it refers to the width of the strip, is fixed 

and is most of the time omitted from the notation. We introduce 
2

16



= and, for any integer ,k  

.k

kn =  We write the quotient 
( )

kn

k

S

n
 under the form of the sum of two terms, which will be 

treated separately: 

 

( ) ( ) ( )
( )
( )

1 1 1

1

k k k kn n n n k

k k k k

S S S S n

n n n n



   
− − −

−

−
= +                                                        (1) 

 

Set 
( )

1k kn n

k

k

S S
Y

n
−

−
=  and 

( )
( )
( )

1 1

1

kn k

k

k k

S n
Z

n n



 
− −

−

= . The general idea of the proof is to show that kY  is 

large with large probability, whereas kZ  is small. We start with the study of .kZ   

 

Lemma 6. – For all 2k  , we have: 

 

( )
( )

1 1

4

k

k

n

n

 

 

−  =  

 

Proof of Lemma 6 

 

This is clear, since 
( )
( )

( ) ( )( )

( )( )

1

1
1k

k

k
k

Log k Logn

n Log k Log

 

  

−

−
−

= and by the choice of .   

 

Lemma 7. – Let 
( )( )

( )
( )0 2

24 1
1 1

2

Log
k

LogLog  

 
 = + +
 
 

. Then: 

 

( )
1

0

1

, 2 1 .
2

kn

k

S
P k k

n





−

−

 
     −
 
 
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Proof of Lemma 7 

 

Let us choose 1 =  in Theorem 1. We have, for any m : 

 

( ) ( )
( )( )

2

2 1
2 , 2

12

m

nP n S n
mLog

   
−

 

 

We choose m  so that 
( )( )

2

2 1

1 22 mLog




−
, that is 

2

4 1
1

2
m

Log 
 + . So we get: 

 

( )( )2 , 2
2

m

nP n S n


     

 

that is: 

 

( )
2 , 2 1

2

m nS
P n

n





 
    − 
 

 

 

Here, 
1kn  −=  and the condition 2mn   is satisfied as soon as: 

 

( )
( ) ( )( )

( )
( )2

2 24 1
1 1 1

2

Log Log
k m

Log LogLog  

 
  +  + +
 
 

 

 

This proves Lemma 7. 

 

Lemma 8. - Let 0k be as before. If 0 ,k k  we have: 

 

0, 1 .
2 2

kP k k Z
  

    − 
 

 

 

Proof of Lemma 8 

 

Indeed, for any ,k  we have both 
( )

1

1

2kn

k

S

n

−

−

  and 
( )
( )

1

4

k

k

n

n

 



−   on a set of probability 1
2


 − . 

This proves Lemma 8. 

 

We now turn to the term 
( )

1k kn n

k

k

S S
Y

n
−

−
= . We recall from Part I, Proposition 9 that, if k n , we 

have, with 
1

4 2
c


= : 
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( )
2

exp
2

n

k
P S k c

n

 
  − 

 
                                                       (2) 

 

We set: 

 

( )
1 1

2
k kn n

k

k

S S
D

n




−

 − 
=  − 
  

 

 

Proposition 9. – For all 1,k   we have: 

 

( )
( )( )

1 /2
,k

c
P D

kLog



−

    

 

where 
1

4 2
c


=  as before. 

 

Proof of Proposition 9 

 

Since the definition of kD  relies upon consecutive differences 
1k kn nS S
−

− , the events kD  are in-

dependent. We have: 

 

( ) ( ) ( )
1 1

1 1
2 2k k k kk n n k n n kP D P S S n P S n
 

 
− −−

      
= −  − =  −      

      
 

 

since 
1k kn nS S
−

− and 
1k kn nS
−−

have the same law. 

 

In the estimate (2) above, we replace n  by 1k kn n −−  and k  by ( )1
2

kn



 
− 

 
 ; we obtain: 

 

( )
( )( ) ( )( )

1

22 2

1 1

1
1 exp 1 exp 1

2 2 2 2k k

k k k

n n k

k k k k

n n Log Log n
P S n c c

n n n n

  


−−

− −

           −  − − = − −          − −         

 

 

But: 

 
1

1 1
1

2

k k

k k

k

k

n n

n

   

 

−

−− − −
= =  − , from the choice of .  Therefore: 

 

( ) ( )( ) ( )( )
( )( )

1

1
2

1
2

1 exp 1
2 2k kn n k k k

c
P S n c Log Log n c Log n

kLog





 



−

 
− − 
 

−
−

      
 −  − − = =     
      

 

 

This proves Proposition 9. 
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We need a quantitative version of the second Borel-Cantelli Lemma: 

 

Lemma 10. – Let kD  be a sequence of independent events; let 
c

kD  be their complements. Then : 

 

( )
11

exp
N N

c

k k

kk

P D P D
==

   
 −   

  
  

 

Proof of Lemma 10 

 

We have, for all N : 

 

( )( ) ( )
1 11

1 exp
N N N

c

k k k

k kk

P D P D P D
= ==

   
= −  −   

  
   

 

using the inequality 1
xx e−−  , 0 1.x   This proves Lemma 10. 

 

Set, for all ,k  
( )( )

1 /2 1 /2

1
k

c
u

kLog
 


− −

= . We deduce from Proposition 9 and Lemma 10: 

 

11

exp .
N N

c

k k

kk

P D u
==

   
 −   

  
  

 

Since the series of general term ku  is divergent, the sum 
1

N

k

k

u
=

  can be made arbitrarily large, 

choosing N  large enough. Then 
1

exp
N

k

k

u
=

 
− 
 
 is close to 0. So the intersection 

1

N
c

k

k

D
=

has a very 

small probability. But this intersection is the set of all paths for which  
( )

1 1
2

k kn n

k

S S

n




−

 − 
 − 

  
 for 

any 1,..., .k N=  More precisely, we have: 

 

 

Lemma 11. – Let 0k  as in Lemma 7. We have, if

2

2
0 0

2

2
N N k Log

 



  
 = +  

  
: 

 

( )
1

0, , 1 .
2 2

k kn n

k

S S
P k k k N

n

 


−

− 
    −  
 

 

 

Proof of Lemma 11 
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We choose 0N  large enough so that, if 0 ,N N  

0

exp
2

N

k

k k

u


=

 
−  
 
 , that is 

0

2
.

N

k

k

u Log


 
  

 
  

But, for 0 ,k k  we have 
1

2

1
ku

k


−
 ,  and therefore: 

 

0 0

1
2 2 2

0

2
.

N N

k

k k

u k N k
  



− +  
  − 

 
   

 

So we choose N  large enough, in order to have: 

 

2 2
0

2 2
N k Log

 

 

   
−    

  
 

 

that is: 

 
2

2
0

2

2
N k Log

 



  
 +  

  
 

 

This proves Lemma 11. 

 

Let us finish the proof of Theorem 5. We have: 

 

( ) ( ) ( )
( )
( )

1 1 1

1

k k k kn n n n k

k k k k

S S S S n

n n n n



   
− − −

−

−
= +                                                        (3) 

 

Let 1E  be the set: 

 

1 01 , ,...,
2

kE Y k k N
 

=  −  = 
 

 

 

Then, Lemma 11 says that ( )1
2

P E


 .  

Let 2E  be the set: 

 

2 0,
2

kE k k Z
 

=    
 

 

 

Then ( )2 1 .
2

P E


 −  We have: 
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( )( ) ( ) ( ) ( ) ( ) ( )
2 21 2 1 1 1 21

2 2

c
c c cP E E P E E P E P E P E P E

 
=  + = + −  + =  

 

and therefore: 

 

( )1 2 1cP E E  −  

 

But 
1 2

cE E  is the set for which there is a ,k  0 ,k k N   with 1
2

kY


 −  and 
2

kZ


 . We de-

duce: 

 

1k k k kY Z Y Z +  −  −  

 

This finishes the proof of Theorem 5. 

 

II. Comparison with our results 

 

If we consider ( ) ( )( )2x xLog Log x =  then the integral 
2

1


 diverges at .x =+  The same 

holds for the barrier ( ) ( )b x xLog x= , which is above the previous one. We know that: 

 

( ) ( )
( )( )2

1 1
dx dx Ln Ln x

b x xLn x
= =   

 

and therefore the integral diverges at .+  So, the total energy left at time N  (probability that 

the game continues up to time N ) tends to zero when ,N →+  for both barriers.  

 

The comparison between Khinchin's methods and ours lead to the following conclusions: 

 

➢ Khinchin's methods may handle the case of a single curve, whereas ours may handle only 

the case of two symmetric barriers; 

 

➢ Quantitative estimates obtained by means of Khinchin's methods are of probabilistic type, 

and much weaker than the results derived by means of operator theory; 

 

➢ To say that Khinchin's curve ( ) ( )( )2x xLog Log x =  is a "security curve" is incorrect ; the 

statement almost surely, 
( )

limsup 1n

n

S

n→+

=  is only asymptotic.  
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