Société de Calcul Mathématique SA

Mathematical Modelling Company, Corp.
Decision-making tools, since 1995

Simple Random Walks in the plane:
An energy based approach

Part IV: Variable Fortunes

by Bernard Beauzamy

November 2019

In this Fourth Part, we investigate the case of variable barriers: the barrier is represented by

a function of time; say for instance b (n) = i\/ﬁ .

We consider symmetric barriers, which means that the rules are the same for both players: if
at some time N the fortune of one of the players reaches the barrier, the game stops. The ques-
tion is: what is the probability that the game continues after N steps ?

We obtain a necessary and sufficient condition:
Theorem. - The probability E, that the game continues after N steps tends to zero when

N — +oo if and only if the integral
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diverges at infinity.
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For instance, for b \/— j = Log diverges at infinity, so the probability that the

game continues indefinitely is zero. The same holds for b(X): xLog(x), since

Jé:Log(Log(x)).

More quantitatively, what we prove is that the remaining energy at stage N, denoted by

E, , satisfies:

Ey~cexp| —— |
8 ) b7(x
) (%)

where t is the unique number such that b(tN ) = N. The constant 0 < ¢ <1 depends on the
particular barrier and on its discretization, but is independent from N.

During the n"™ period (see definition below), the profile of fortune is proportional to the
vector:

(sin(&),sin(23),...,sin(n3),sin((n —1)9),...,sin (9))

T
2n+1’

where 4=

We use the "energy based" approach, described in Parts 1, 2, 3. In terms of energy, what
our results show is that, for instance for b(X) = ,/xLog (X) , the energy is more and more

absorbed by the boundary, and the remaining part on each vertical becomes smaller and
smaller. In probabilistic terms, it means that almost all games will eventually touch this
curve. This seems to contradict Khinchin's results (Law of the Iterated Logarithm), which

is often presented under the form "the curve b \/ 2xLog Log ( )) is a security curve'.

Such a presentation is incorrect. The curve ,/XLog (X) is above Khinchin's curve, and still

the probability to hit it between two instants N, < N, is always strictly positive.
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In order to use the tools defined in the previous Chapters, we must first investigate what
happens when the barrier is not constant.

I. Transition between two periods

1. Energy propagation

For us, a "barrier" is a positive function b(X) , defined on X >0, differentiable, increasing,

and satisfying b(X) — +o0 when X —>+o0, A simple example is b(X) =Jx .

We define a continuous barrier, but our game uses only integer values. So we have to
convert our barrier into a succession of constant segments, with integer values.

Let us describe this representation in detail in the case of the barrier J_r\/ﬁ .

Figure 1: Discretization of the barrier

The changes will occur at times 4n?, n=0,1,.... On the interval 4n* < x < 4(n +1)2 , the

barrier is at 2n+1 (recall from Part II that we want even values of time and odd values
for the barrier). So, in the notation introduced in Part I, £ =n and this value is used on

an interval of length |, =4(n +1)2 —4n?, thatis |, =8n+4.

Let us give a rough description of the meaning of | , forgetting about the requirements
"even times and odd values for the barrier". Then, |, is the time that the barrier needs to
go from 0 to 1, and | is the time it needs to go from n—1 to n. If X, is defined by the
equation b(Xn) =n,then X, =1, +---+1,. If £ is the inverse function of b (which exists,

since b is strictly increasing), we have:

1

l, =X, — %, =8(n)-B(n-1) zﬂ’(n):m.

In the case of the function b(X) = \/; , we have |, ~2n ; this rough description is correct

within a multiplicative constant.
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The interval of time during which & =n is called the n" period. From now on, we forget

about the continuous curve and remember only the segments.

We have now to investigate the transition between two periods. The barrier was at 25 +1

and moves to 2&+3.

Let us first consider the transition on the energy, that is the variables e(2n,2k). As we

did in Part II, we restrict ourselves to the upper half-plane, using the symmetry of the
problem.

20+3
LBt
20+1
—  »
fa'd Bz
Sk Sk
2n 2n+2

Figure 2: Notation for the transition

It will be convenient to have a simple notation just for the transition. On the vertical cor-
responding to time 2n, we have & +1 points A,..., A§ ; at time 2n+ 2, we have & + 2 points

By B,y - We denote by a, the energy at the point A, and similarly b, for the B,.

For the first & points, we have the usual transition equations:

bo :%(ao+a1) (D)

1 1 1
b, :Zak_1+§ak +Zak+l for k=1...6-1 (2

The last two equations are different from the constant case; they are:

b =1a +la

3 4 &1 2 4 (3)
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1
b§+l :Za§ (4)

If the barrier was constantly at 2£ +1, instead of (3), we would have:

1 1
b, = At 6y
and instead of (4) :
b.,=0 (6)

So, the fact that the barrier moves one step higher means that less energy is lost:

) 1
- for bg, increase of —a,,
4

- forb

. ¢ 1
41> INCTEASE O Zaé,

. ) 1
which represents a total increase of energy equal to Ea £

Let us now turn to the variables x(n, k) and describe the transition on these variables.

Recall that, for k =0,...,£ -1 and n>2:
1
X, :E(ak +ak+1)

We have (see Part II):

by = X, (7

b, :%(Xk—l_'_xk) for k=1,...,&-1 8

b, ==>(a,,+a,)+ %(ag +a,,) with a,,, =0

which gives:

1
b, = 5 Xea 5 Xg 9
1 1
b§+1=Z(a§+a§+1)=§x§ (10)
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Let us define y, = %(bk +b.), k=0,...,&

Vi == (X + 2% + X)), k=1,...,6-1
1/1 1 1
yg_z §X§71+EX§+2X§ ZX§71+ Xéz

The equations are the same as in the constant case; we simply have one more intermediate
equation. With the original notation, we have:

x(n+1,0) :%x(n,0)+%x(n,1)

x(n+1,k) :%x(n,k—1)+%x(n,k)+%x(n,k +1),fork =1,...,& -1 (11)

x(n +1,§):%x(n,§—1)+%x(n,§)

We have proved:

Proposition 1- On the variables x(n, k) , the fact that the barrier is shifted one step higher

leads simply to a new intermediate equation in the transition equations.

This is quite important in practice, because it means that the theory developed in Part II
will apply, despite the changes of position for the barrier. We have simply to take into
account the fact that the matrix M, will increase by one dimension at the transition be-

tween two periods and the corresponding eigenvalues will change accordingly.

We note here that this result applies to any transition, where the barrier is shifted one

step up, and does not depend on the particular function b(X).

2. Changes in the eigenvalues and in the eigenvectors

We now work constantly with the variables X, = x(n, i) . In dimension &, we know (see

Part II) that the eigenvalues are of the form:

1+cos( . 9. | —
,1_:—( 5"):cosz —=L | with Sé-zuﬂ, 1=1...¢,
| 2 2 b2 +1
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and the same expressions will remain in dimension & +1, with £ replaced by & +1.

In dimension &, the eigenvectors were:

V. :(sin(é&m),...,sin(x%vj)), j=1..¢

Recall that:

i

1 1 1
MJE :§+Z’ S(Vé,j)zz—’
%)

where S(V) is the sum of the components of the vector V. In dimension & +1, they will
be:

Ve, :(sin((§+1)l9§+l,j),sin(és&lvj),...,sin(&iu,j)), j=1..,&+1, and:
1

2 & 3 _1 1
N§+l,j‘2 _E+Z’ S(V§+lvj)_ 2 tan(%j )
2

where S (V) 1s the sum of the components of the vector.

We first investigate an upper estimate: what properties of the barrier will ensure that the
energy left at the " stage tends to 0 when n—>+oo ? Recall that we always work on the
variables x(n, k).

II. Upper estimates

We will show:

: T PO
Theorem. 1 - Let | be the length of the n" period. If the serLesz —>- 1s divergent, then
n

n=1

the probability E, that the game continues after N steps tends to 0 when N — +oo.

Proof of Theorem 1

We start with an energy equal to 1 at the origin. Initially, the barrier is set at some arbi-
trary value 2n,+1, and remains so until some time t; is reached. Then, the barrier in-

creases to 2N, +3, and so on. More generally, the barrier takes the value 2n+1 at the n"

stage, which starts at t, and finishes at t,, ; its durationis |, =t ,, —t,.
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Let us first see how to deal with the first stage. As we saw in Part II, at time t, the energy

1 at O becomes the vector X, with components:

. 2t +1
x(t,1) = 22 ( ;‘:, j (1)

The total amount of energy is still 1: there is no loss during the first t, steps.

Let M Dbe the operator reflecting the propagation of energy. It operates first on a space of
dimensionn,, then n,+1, and so on (we keep the same notation, independent of the di-

mension).

The vector X, does not have a satisfactory shape, in the sense that we have no information

at all on the iterates M"X, ; we have such an information only for the eigenvectors of the

matrix M (and these eigenvectors depend on the dimension, of course). Therefore, we want

to replace X, by the vector V,

b1 » first eigenvector of the matrix M in dimension n,. We

know that:
2(sin(ny9,),....sin (%))
Vor = 2
tan (n,9, )
with & = ol This vector is normalized in |, norm: it has positive coefficients, with
n, +

sum equal to 1.

The replacement of the vector X, by V;, is done using the following Lemma:

2n, +1
) _ n, +1
Lemma 2 . - For every n, ‘M le < C‘M r'\/0’1‘1 with ¢ = m
0

Proof of Lemma 2

! . ) 1 (2n,+1
The first coefficient of X, is X(l, 1) =

PYoE n0+1) We have X, (i)<cV,,(i) for every

i =1,..,n,, with this choice of Cc. The operator M has positive coefficients, so it respects
the order: during each period, we will have ‘I\/I nle < C‘I\/I r'\/011‘1, because the |, norm is

simply the sum of all coefficients (the coefficients are positive). This proves Lemma 2.

BB Simple Random Walks, Part IV 8



The replacement of the vector X, by V, is not important in the process, because it is done

only once. From now on, we constantly work with eigenvectors.

Assume now we have reached the end of the n™ period and start we n+1% period. Assume
we have obtained an information about the energy carried by the first eigenvector in di-
mension N, thatis V_, ; we would like to pass it to the first eigenvector in dimension n+1,

nl >’
thatis V

w11 - Unfortunately, this is not possible directly: this transition is not a conserva-

tive move.

Indeed, we are now with an eigenvector, V,, of the matrix M in dimension n. Unfortu-

nately, this vector, when we pass to dimension n+1, does not become an eigenvector of

the next matrix. More precisely (without normalization),
V, = (Sin (ng),...,sin (31)) (n coordinates), with § = ﬁ, becomes, after embedding :
n+

V)= (sin (n.91) yeeey SIN (191) , 0) (n+1 coordinates),

whereas the first eigenvector of the new matrix is:

T
2n+3°

W, =(sin((n+1)8,),....sin(2%),sin(%)) (n+1 coordinates), with 9 =

There is no simple connection between V,' and W, : both are very close, as the following

picture shows (V' is in red and W, is in green) :

Still, we cannot simply say that we replace V,' by W,, because W, is slightly closer to the

barrier. We may compute the loss in this replacement, but the sum of such losses, over all
transitions, in infinite, so such an approach, keeping only one eigenvector at each step,
must be refined: we have to take into account the whole decomposition of V,' on the basis

of eigenvectors in dimension n+1.
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So we need to compute the decomposition of the eigenvectors in dimension N on the basis
made of the eigenvectors in dimension n+1. Quite surprisingly, there is a closed form for
the coefficients, and this closed form is rather simple.

In order to simplify our notation, we write V, :Vn‘i for the vectors in dimension n, embed-
ded in the space of dimension N+1 (a zero is added as the last coordinate, see above), and

W, =V,

w1 j for the eigenvectors in dimension n+1.

Recall that the i™ first vector, normalized so that S(\/I ) =1, imbedded in dimension Nn+1,
1s:

_otan 2 (si : . (2i-Drx
V. =2tan 2(3|n(n19i),...,3|n(l9i),O),w1th19i_—2nJrl ,

The eigenvectors of the next step are:

2j-1
T
2n+3

W, :2tan%(sin((n +1)77j),...,sin(77j)), i=l..n+l p =
With this normalization,

2 . n+l 1 ul 7,
Mj‘2:4tan2?]kz_1: smz(knj):(7+z)4tan2?‘:(2n+3)tan2?‘.

Proposition 3. - Let & J=1,...,n+1 be the coefficients of the decomposition of V; on the

basis WJ.. Then we have the closed form:

(Zi—l j (Zj—l )
1-cos 7 ||| 1+cos r
2 ( 2n+1 2n+3

a = — —
2n+3 CoS Mz —CO0S 2 17r
2n+3 2n+1

Proof of Proposition 3

We write the orthogonal decomposition of V; on the basis of eigenvectors Wj in dimension

n+1:
B n+1 B n+1 <Vi’Wj> _ 1 n+l <V| ’Wj>
Vi _JZ_; ai,jo _jz_ll M‘Z WJ - 2n+3jz_l: ) 77]_ Wj (1)
Il2 tan ?
We have:
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n+1

<Vi,Wj>:IZ_1: Vi(I)Wj(I):4tan%tan%IZ: (sin((n—l+1)9i))(sin((n—l+2)77j))
We know (cf. Part II) that:

(21-1)9

sin((n—1+1)4)=(-1)"cos

and:

(21-1)n,
2

sin((n-1+2)7,)=(-1)"" cos
which gives:

atanStanli
o= \l W> 22 % (sin((n—l+1)l9i))(sin((n—l+2)77j))

N M ‘ (2n+3)tan27;j =1

n

)) cos((21-1)(2i —1)t,)cos((21-1)(2j-1)t,)

1=1

4 tan((2i-1)t,
2n+3tan((2j-1)t,

&% ;= (_1)i+j

Since, with this normalization, S(Wj ) =1 for all j, @; represents the part of energy car-

ried by WJ..

1 = 1 =

\7Vewrite,witht1:2 12 %73 35:
n+ n-+

cos((21-1)(2i 1)t )cos((21 -1)(2j -1)t,) =
=%cos((2l—1)((2i—1)tl—(2j—1)t2))+%cos((2l D((2i-1)t,+(2i-1)t,))

So & ;= A’j + Bi’j with:

A - (1) 2n2+3tt;:((( )) 5" cos((21-1)((2i-1t, - (2]-2)t)

e e I CRUCEEIRCI RN}

1=1

We use the identity:
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1sin(2tn)

i cos((2|—1)t)=§ in (1)

1=1

So we get:

) 1 tan(( S|n(2 -(2j-1)t ))
As=(-1) 2n+3 tan (( L S'n( 21 Dt,))
N tan (( sm(2 Dt +(2j-1)t,))
= ) 2n+3tan t, sm( Dt +(2j-1)t ))

One checks easily that:
2n(@i-t,—(2j-1t,)=(i- j)z—@i-Dt, +3(2j-1)t,
2n((2i-Dt +(2j-1t,)=(i+j-1)z—(2i-1)t, -3(2j -1)t,

sin(2n((2i -1t — (2] -1)t,)) = (1)’ sin(—(2i -Dt, +3(2j -1)t,)

sm(2n(( 1t +(2j-1)t )) (-1)"'sin((2i-1)t, +3(2j -1)t,)

S0 we obtain:

A - 1 tan((2i-1)t,) sin(—(2i—)t,-3(2j-1)t,)
2 2n+3tan((2j—1)t2)sin(((Zi—l)tl—(Zj—l)tz))

g __ 1 tan((2i —1)t,) sin((2i—1)t, +3(2j-1)t,)
§ 2n+3tan((2j—1)'[2)sin(((2i—1)t1+(2j—1)t2))

and therefore:

1 tan((2i1)t1)(sin((2il)t1+3(2j1)t2)+sin(( )t +3(2j-1)t,)

ai'j:2n+3tan((21—l)tz) sin((2i -1)t, - (2] -1)t,) sin((( Dt+(2j-1)t )

After simplification, we obtain:
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L2 tan((2i-1)t,) sin(2(2j-1)t,)sin(2(2i-1)t,)

" 2n+3tan((2j-1)t,)cos(2(2j-1) )—cos(2(2i—1)t1)
_ 8 cos ( 2]— D, )sin®((2i-1)t,)
2n+3cos(2(2j-1)t,)—cos(2(2i-1)t,)

and finally:

2 (1+cos(2(2j-1)t,))(1—cos(2(2i -1)t,))
9T n+3 cos(2(2 1)) -cos(2(2i -1,

which proves Proposition 3.

The sign of ¢ ; is the sign of COS(2(2j —1)t2)—cos(2(2i —1)t1); it is positive if:

713} > cos((Zi -

cos((Zj -1) o

2j-1_2i-1
2n+3 2n+1’

i j,that is
n+1

For a given vector V,, this is satisfied for all j <i.

2(|+1)—1> 2i—1

For j=1i+1, the sign is negative, since .
2n+3 2n+1

We deduce:

Corollary. 4. - For the first eigenvector V,, the first coefficient ¢, is strictly positive, all

others are strictly negative.

In order to make a proper investigation, we have to start with the first eigenvector U, in
dimension n—1, then decompose it on the basis of eigenvectors V, in dimension n, then

again decompose the V, on the basis of eigenvectors Wj in dimension N+1.

Notation. - In dimension n—1, the eigenvectors will be denoted by U i j=1..,n-1;the

first one, normalized in order to have energy 1, is:

U _2tan('2](sm((n 1)4).sin((N-2)4),...sin(4)), 4 = 2nﬂ_1

The associated eigenvalue is: 4, = c0s* —*

We have : |U1|§ = tan? [%)(2!’1 —l).
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In dimension n, with ¢, = 7, we have the eigenvectors V,,i=1,...,n:

2n+1

V, =2tan (%) (sin (n(pi),sin ((n —1) (pi),...,sin (@i )) , with the eigenvalues z = c0s’ %, and

[\/,|§ = tan? (%j(Zn +1).

From Proposition 3, we deduce the decomposition:

n

U1 = Z ViVi

i=1

where V; is the energy carried by V, ; we have, for i =1,...,n:

(el reom(57))

2n+1 cOS 2|—17T —cos 1 -
2n+1 2n-1

Using the identity 1— COS(A) =2sin? [gj , we may write V; under the form:

Vv, = n
2n+1

(2i—1 j
1+ cos T
4 sin? 1 i 2n+1
2i—1 T )
CoS 7T |—CO0S
2n+1 2n-1
14X

We saw above that v, >0, v; <0 for i =2,...,n. The function f (x)= , X<a, satisfies
a—X

l+a . . . . .
f'(X): >0 so f is increasing. Therefore |Vi| 1s a decreasing function of

(o)

We now turn to explicit computations of the energies carried by the V,'s:

— Explicit computation of v, :

1+cos| -
4 .2( 1 7z 2n+1
v, = sin

2n+1 2n—12jCOS T ) _cos| T
2n+1 2n-1
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Indeed, using the identity:

V4 V4 . T . 27N
cos —CO0S =2sIn 5 sin >
2n+1 2n-1 4n° -1 4n° -1

we obtain:

1+ cos i

2 ., 1 2n+1
v, = sin —
2n+1 2n-12

which can be written:

9 1
COosS —
4 .2( 1 7z (2n+12j
v, = sin

2n+1 2n—12jSin Zz sin ZZzn
4n° -1 4n° -1

This gives the decomposition:

2 2
v1=1+i— z >+ z ;+0 %

2n  24n°  48n n
- Explicit computation of Vv, for i >2:
We know that v, <0 for i > 2. Therefore:

Ccos —
/4 2n+12

vi| = sinz( —j .
2n+1 2n-12 Cos(znﬂ 1)“:05(22:,_11”)
-~ +

Using the identity:

( Vid ) (2i—1 j 2( 1 nj Z[Zi—lﬁj
Cos —CO0S 7 |=2]| cos — |—cos —
2n-1 2n+1 2n-12 2n+12

we obtain:

o 2117

cos =

4 - 1 2n+12
|Vi|:2 1" (2no12 1 2i—1
n+ n cos® 7 |~ cos? z
2n-12 2n+12

BB Simple Random Walks, Part IV
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which gives the representation:

1 22 —2i+1 C(i)
|Vi|= P (x + 22/ 2 2 3
2|(|—1)n 4i (|—1) n n

with 0<c(i)<1.
Therefore:

1 2i* -2i+1
<— +—
2i(i-1n  4i*(i-1)"n

v

n n
We know that Z v, =1, so Z v,=1-v, <0,
i=1 i=2

which gives:

4 1 7 7° 1
l=v. - 1=—— A el
22: Ml =, 2n 24n2+48n3+o(n4]

when N — 40,

The decomposition of Vv, looks strange at first sight: in order to pass from the first eigen-
vector in dimension N—1 to its homologue in dimension N, one has to multiply by a coef-

ficient of the size 1+ 2— ; our result explains this, since all coefficients in the decomposition
n

are negative. However, this corrective coefficient is the main technical difficulty in our
approach.

3. Transition from step N to step n+1

We now study the transition from step N to step n+1. We write the decomposition of the

i" eigenvector V, in dimension N on the basis of eigenvectors W; in dimension n+1.
After embedding, V, becomes:

2i -1
2n+1

V, =2tan 19;‘ (sin(ng,;).sin((n —1),9,”),...,sin(Snyi),O), S, = P

The decomposition is:
n+1
Vi=> w W,

j=1
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where, for i=1,...,n, j=1,..,n+1, by Proposition 3:

. 9 ..
Sinz l9n,| C052 n+l, j
8 2 2

M= on13 cos(3,,,;)—cos(9,)

We have the equivalent formulas:

4 (2-1x 1+C°‘°’( ]
Yo e (Zne12
n+ n+ cos j ( ]
2n+1
cos? 2j-1rx
8 sin (2I 11) 2n+32
T n+3 n+12) 2]—17T —COS(ZI_lﬂj
2n+3 2n+1
and:
2]-1rx
) cos? -
W - 4 Sinz(Zl—lg) (2n+32j
i - —
2n+3 2n+12 cos? 2)-1x _ cos? 2i-1rx
2n+32 2n+12

The coefficient W, ; may be viewed as the part of the energy on W; which comes from V..

This 1s a transfer coefficient.

— Estimates of W,
If j<i, W, ;>0 ;if j>1, w,; <0.

Fori=j:

For i # j, we have the Taylor expansion:

(2i-1)° 1 1(2-1) (8 -3+ -j+1)1

1
i(i—)-j(i-Dn 4 i(-D-j(ji-1) Fm(ﬁj

1
ij E
For i> j, W, ; >0 and we have the upper estimate:
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W o<l (2i-1)° 1
M 2i(i-1)-(i-1)(i-2)n

Fori<j, w ; <0 and we have the upper estimate:

‘W__‘<1 (2i-1° 1
2 (- -i(i-1)n

This is an increasing function of i, and therefore:

(2j-3)° 1_
L

i(1-9-(i-1)(i-3)

W. [ < (W, -Sl
o <o <

If V, carries the energy V;, the vector W; will carry the energy Vv, XW, ; coming from V..

The first approximation 1is:

-1 1 (2i-y) 1 1 (2i-1° 1

RN 2i(i-)-i(i-9n 4(-1)i(i-)-i(-1n’

— Sign of transfer coefficients

Let us summarize what we found; this is the sign of energies at step N ; green: positive

energies, red: negative energies.

Ui Vi Wy
W
Va 9 ?
'3 s
h
v W
4 N4
v w
5 Vs
w
o0

and this is the sign of transfer coefficients (green is positive, red is negative):

BB Simple Random Walks, Part IV
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\Z W,
9
h

Vv, p W,

v, W,

4. Introducing the attenuation during each period

If the ™ period has length |, each eigenvector V, is replaced, at the end of the period, by

21-1 z , by definition of an eigenvector. At the end of the n"
2n+12

|nV

LI I

where ﬂn’i = COSZ(

period, the energy carried by V, is now ﬂ,,:"ivi =cos”" 21-1 i V.
' 2n+12

5. Organization of the proof

Let us now give an overall presentation of the idea of the proof. We start with an energy 1
on U,, dimension n—1. Assume that we can prove that, in dimension n+1, the energy

. . I . .
carried by W, is <1-C - with a constant C independent from n and that:
n

- up tosome j,, all energies carried by W,, ....,Wjo are negative;

— the energies carried by Wj0+l' ...W, ,, are positive, but small, namely they satisfy:
n+l Log (n) .
Z W, <C———= for some constant ¢ independent of n.
= n
j=lo+1

Then, we forget about the negative energies, and penalize ourselves: we bring the positive

. . ) |
energies of W. W_., to W, ; this way, the total energy at step n+1 will be <1-C -,
n

Jo+170 T n+l

carried by the first eigenvector, W,. Iterating the argument, at step 2N, the energy will
satisfy:

£, <[5
n-1

where 0, is the transfer coefficient from n—1 to n+1.
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We will have:

N
En <[]

and:

S

N
Log(E,y )<Y Log (l—C%j ~-C>’
n=1

n=1

(1—0'—"2)
n=1 n

—% — —0 when N — +o0 and E,, —0.

In order to achieve this program, we now need to compute precisely the energy carried by

each vector Wj.

6. Energy carried by each Wj

We now compute the energy actually carried by each vector Wj , taking the attenuation

into account. It is the sum of all energies sent by each V, ; therefore, with | =1, :

sin2( 1 ”jcosz*z' ( 2i-1x
2n-12 2n+12

j . Z(Zi—lﬂ') 2(2]—17[)
SIn — |COS —
2n+12 2n+32

8 g
j_2n+12n+3§

( 2i —
CoS
2n+

1 b
7 |—COS
1 j (Zn—l
which can be written:
8 8 . 1 =« (2)-1x
W. = SIn — |COS — (X
' 2n+12n+3 2n-12 2n+32

cos?+? 2i-1 i
2n+12

<Y

2j-1 2i-1
CoS 7T |—CO0S T
2n+3 2n+1

sinz(Zi_lﬂj
2n+12

or:

4 4 . 1 «x
W, = sin = x
' 2n+12n+3 2n—12

— 2i—1 Vs
cos T |—Cos
2n+1 2n-1

2j-1 2i—1
cos 7T |—CO0S T
2n+3 2n+1

21-1 2]-1
] . 1+cos T 1+cos T
3 sin2(2|_1 7[) 2n+1 2n+3
. 2i—1 s 2j-1
= S T |—Ccos S T
=1 2n+12 co co co J
2n+1 2n-1 2n+3

2| 2|_17Z-

2i -1 cos 2n+15
—CO0S s
j (2n+1 j

First, we study the energy carried by the first vector, W, :
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Proposition 5. — When n — +oo, we have:

2 2

W, ~ ——41———g,mm0<g<
16nLog(n)

n® -

Proof of Proposition 5

We have:

4 4 . 1 =z
W, = sin — [x
2n+12n+3 (2n—12)

2i—-1 1
o , l+cos| —7 1+cos r .
oy SinZ(Zl—l 7[) 2n+1 2n+3 cosz'(ZI_l ﬂ'j
cos ELJH:—C% _ T |cos 1 7 |—cos 2l ln 2n+12
n-+ n-— n+ n+
2n+1 2n-1 2n+3 2n+1

This energy is the sum of two terms: the term for i =1, which is positive (contribution of

V,) and the sum for 1> 2, contributions of Vj, j=2,..,n, which are all negative. So we

write W, =a+S, with:

4 4 =2 1 7[ =2 l 7[
a= sin — |sin Zx
2n+12n+3 2n-12 2n+12
1+cos( 1 ﬂ] 1+cos( 1 ﬂj
2n+1 2n+3 21 1 T
1 7 1 1 S\ Zni2
CoS T |—Cc0S| —— | cos T |—CO0S T
(2n+1 j (2n—1) (2n+3 ) (2n+1 )
4 4 ., 1 =x
S= sin Zx
2n+12n+3 2n-12

2i—-1 1
\ : l+cos| =& 1+ cos w ,
XY ﬁnz(zr_lz) 2n+1 2n+3 am”(ZI_lzj
=2 20+12) cos[ 271 ) cos[ -7 Jcos| —t x| —cos[ 2L x 2n+l2
2n+1 2n-1 2n+3 2n+1

We first compute an estimate for a:

X
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4 4 ., 1 7)., 1 =z
= sin — |sin ZIx
2n+12n+3 2n-12 2n+12

1
l+cos( 72') 1+cos( ] 1
y . 2n+1 cosz'( Zj
cos T |—Cos i 2n+12
2n+1 2n-1 2n +3 2n+1
. 1+cos 1 s 1+cos T
Vs 2n+1 2n+3 2l 1
" 64n® 1 7 1 1 S\ Zni2
Cos T |—cos| ——— | cos T |—Cos s
(2n+1 ) (Zn—lj (2n+3 j (2n+l j

But:

T T . T . 27N V.4 27N 7’
Cos —CO0S =2sin > sin 5 ~2 > > |=——
2n+1 2n— 4n° — 4n° -1 4n 4n 4n

cos[zr:: 3)—(:05(2”7:1] = Zsin((2n +1)722n +3)J5in((2n2f1()n(;nll 3)} - 2[47;2)(17;?j = fnza

and therefore:

[N

a~
64n° 7 2 4n 4n

2
1 1 1
. 1+cos 2—7: 1+cos 2—7; 1 1+cos 2—7; 1
7 n N_J cos? (—n} | —N I cos? (—7[) = cos**? (ij
7 2 n
4n® 4n®

| . . .
We observe that the sequence % — 0, when n—+oo. Indeed, we investigate barriers
n

which are above b(X) = \/; , for which this convergence already holds.
The link between the cosine above and |, is made by the following Lemma:

n

. . I, . : :
Lemma 6. — The divergence of the series with general term — is equivalent to the diver-
n

4+41,

gence of the series with general term ¢, =1-C0S (fj More precisely, for any & >0,
n

there exists N, >1 such that, if n>n,:

2
—(1+g)7[ % < COos

1—
4n

aval, (ijsl_(l—é‘)yzz |n
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Proof of Lemmma 6

2

We observe that f (k) = —% Log [COS (%)j is a positive, decreasing function of k, which
Vs

tends to 1 when k — +00; let £ >0, we have, for n large enough:

2
1< 32| o (cos(ijj <l+e
V4 4n

which gives:

_8”_;(1+ l,)=(4+4l,)Log [COS(%)J >—(1+ g)%(l-}- l,)

and:

1_exp{_8”—:2(1+ |n)} sl—exp{(4+4ln) Log (cos(%)j} sl—exp{—(l+ g);TZZ(H |n)}

that 1s:

2

7l aal [ 7T T
— - <1-—- nl | <] — — JR—
1 exp{ 8r]2(1+In)}_1 cos [4 )_1 exp (1+g)8n2(1+ln)

n

1—exp(—x)
X

We have 1-¢< <1 for x>0 small enough, that is:

(1-&)x<1l-exp(—x) <X

from which we deduce:

2
T

a7 T
(1-6) 25 (11, <1- o5 (E} <(1+e) 2 (14,)

which proves Lemma 6.
Vs 7% |
Therefore, a ~cos™*h | = | ~1— — .
4n 8 n

We now turn to an evaluation of S. All terms in S are negative. We have:
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2+2|(2i—1ﬂ'j . 2(2|—17Z'j
) ] COS - — = sin =
hﬁvz—umz( 1 'Zj 2n+12 2n+12
4 . .
n n+32)i3 cos| —*— | —cos 2 17[ cos 1 7 |—cos 2 17z
2n-1 2n+1 2n+3 2n+1
which gives:
cos*? (ZI -1 7[] sinz( 21-1 ﬁj
2n+12 2n+12

n iz

7% &
sl< 77 2 p 2i -1 1 2i-1
COS( j—COS 7T | COS 7T | —CO0S T
2n-1 2n+1 2n+3 2n+1

Lemma 7. — Forall n>4 and i > 2, we have:

sinz(Zi_lﬂj
2n+12

- <1
T 211
CoS —CO0S T
2n-1 2n+1

Proof of Lemma 7
We write:

. Z(Zi—lﬂj .Z(Zi—lﬂj
SIn — Sin —
2n+12 2n+12

Vs 2i—1 T . 2-1rx
C0S —CO0S T cos —1+2sin =
2n-1 2n+1 2n-1 2n+12

The function
o+ 2X

value is:

sinz( 3 ”j
2n+12

V4 3
Cos —CO0Ss
(Zn —1) (Zn +1)

We need to show that:

.. 3 V4 3
sin — |<cos —C0s
(2n+1 2) (Zn—l) (2n+1)

But:

BB Simple Random Walks, Part IV
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T 3 . (1 3« 1 x . (1 3« 1 =z
cos —COs =2sin| = —= sin| — +=
2n—1 2n+1 22n+1 22n-1 22n+1 22n-1

and:

1 3r 1 ~« . (1 3«
sin += >sin| =
22n+1 22n-1 22n+1

We need to show that:

1 3r 1 T . (1 3«
2sin >sin| —
22n+1 22n 1 22n+1

sin(x) sin(jj 2«/5,

. sin(x) . . i
But the function is decreasing ; for X < Z , we have > =
X X

fore:

22n+1 22n 1 T 22n+1 22n 1

Zsm(l 3t 1 =z J 4\/_(1 3n 1 =z

1 3r
— as soon as
2 2n+1

42 )3z 2+l
z J’ 2n-1

4
Since { 2 —1}— >1.33, this happens when n > 4. This proves Lemma 7, since:

r Jasz

1 3r . 1 3
— >SIn
22n+1 22n+1

j . We return to the proof of Proposition 5.

From Lemma 7 follows that:

cos2+?! 2i-1rx
7’ 2n+12

T -
Nz cos( 1 nj—cos( 2i-1 nj
2n+3 2n+1

|s| <

But:

1 2i—1 . 21— 17[ 1 LA 2i-1nx 1 «
Ccos 7T |—CO0S T |=2sIn sin —+ —
2n+3 2n+1 2n+12 2n+32 2n+12 2n+32

which gives:
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cos?+? 2i—-1 T
2n+12

<Zey — .
2n* 5 Sin(ZI_lﬂ 1 ”jSin(ZI_lﬂ 1 7[)

- _ 7+ _
2n+12 2n+32 2n+12 2n+32

We have:

. (2i-1nx 1 = . (2i-1

SIn —— — |=SIn
2n+12 2n+32 2n+1
2i-1

> sin
(2n+1

1 ~x 2i-1 7)) . 1 =«
cos — |—CO0S — |SIN —
2n+32 2n+12 2n+32

1 =« 3 7). 1 =«
COS — | —CO0S — |SINn —
j (2n+32j (2n+12j (2n+32j

We have sin( ! Z] < %sin( 21-1 Zj : indeed, the right-hand side takes its minimum

2n+32 2n+12
for 1=2 and this minimum 1is Sin 3 z zB—ﬂ ; on the left hand side,
2n+12 4n
. 1 = T
SIn — |r—.
(2n+32) 4n
Also:

. (2i-1nx 1 = . (2i-1x 1 ) 1 3 2 . (2i-1nx
SIn —— — | =SsIn — || COS — |——=CO0S — | [=Z—=SIn —
2n+12 2n+32 2n+12 2n+32) 3 2n+12 3 2n+12

This gives:

cos?*? 2-1lx cos’ 2i-1r
n 2 n
2n+12 3 2n+12

3r’
ERSa . ry 2
4n* S Sin(ZI_l ”)sin(2|_1”+ 1 72') 4n* = SinZ(ZI_l ﬂj

2n+12 2n+12 2n+32

We decompose this sum into two pieces: i>n/2 et i <n/2, with:

2(2i—17rj 2(2i—1;z]
2 o COST| — 2 w2 COS =
g 37 > 2n+12 3 § n+12
1 4 = y Oy = 7 —
an i-"1 sin® 2-1rx 4n” iz sin? 2 172')
2 2n+12 2n+12
rrixtig 2177 G AT, ez L
2 " 2n+12 4 2n+12 4 2
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COSZ(ZI_l ﬂ'j
2 n Py 2 n . 2 2
51237[4 z 2n+12 S372'4 Z COSZ[ZI 1EJS3L4£:3L3
an® o[ 2=l 2nt A 2n+12) 2n*2  4n
2n+12 2
For S,, a-lx < Z, and therefore:
2n+12 4

2i-1rx 2i-17z . (2i-1nx 2i-1rx 2i-1rx
tan — |[> —, SIn — | > —CO0S — |,
2n+12 2n+12 2n+12 2n+12 2n+12

cos® 2i-1x cos® 2-1x
g 37X 2n+12 <37r2§ 2n+12 _ 3%
? 4n4 i=2 sin2 Zi_lﬂ'j B 4n4 i=2 (Zi—l ﬂjz Z(Zi—l ﬂj n4 i=2 (2i—1)2
~ | cos =
2n+12 2n+12 2n+12
3 2t 27t

. . . 27’
Finally, we obtain asymptotically : |S| <— ,and:
n

2 2

V4 ) 2r
—r,with O<r <—-
n

1"
Y 16nLn(n)

which proves Proposition 5.

We now study the energies carried by Wj, j=>2.

— Energy carried by W,

It is a sum of terms:

W,

All of them are negative.
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V, > W, : contribution VW, ~ (1+i) (—ij ~ —i

V, =W, : contribution v,w,, ~ (—iJ [14- ij -1

>

- 2
V. > W, all i>2 ; total contribution 1 _(_2'_1) iz‘_i
2i(i-Ini(i-1)-22n 8n

1l
w

Therefore w, ~ ;—
n

— Estimate upon W; j=3:

It is a sum of terms and, as we see on the following picture (case of W,), some of them are
positive : V; W, for 1<i < j, because Vv, <0 and the transfer coefficient W, ; <0. All oth-

ers are negative.

1 1 1
V, >W. : tribution VW, . ~ |1+ — || - —— |~ =
17 COMHIDEON T ( ZnJ( 21(1—1)n] 2j(j-Dn

V, > W, : 1<i< ], contribution:
& 1 (2i-1° 1 1 (2i-1° 1

WG ni(-) - (D20 4iG-1)i(-D-i(-Dn’

i=2

V. ->W. : contribution _—1l(l+ij ~ _—11
: : 2j(ji-)n{ 2n) 2j(j-1)n
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V; >W,, i> j,total contribution:

1 (2i-1)°
S 2i(i-Dn2i(i-0)-j(i-H)n  n?25 4i(i-0)i(i-0)-j(j-1)

i -1 11 (2i-1) 1 —ii

Lemma 8. — If i > 2, we have the estimate:

Proof of Lemmma 8

(2i-1)° 4i*-4i+1 1

Indeed, ~—— =— —=1+— -
" 4i(i-1)  4i*-4i 4i% — 4j

9 .
< 3 since 1> 2. This proves Lemma 8.

So, in all cases, we may consider that the total contribution of all V, to a given Wj , for all

1#],1s:

1L 1 13 1 1 1
ZViWi,;Z——Z i(i—l)—j(j—l):_zz : " +—Z

i] n? iz n" iz J(j_l)_l(l_l) n2i=i+l j(j_l)_i(i_l)

The second sum exists only if j<n.

S

. n . . .
Proposition 9. - If j < T, then the energy carried by each Wj 1s negative.

Proof of Proposition 9
We have the decomposition:

1 1 1, 1 1
i(i-1)-i(i-1) 2j-1j+i-1 2j-1j-i

Therefore:

But:
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j-1 j-2

LS

i=2 it |

which gives:

1 1 . .
S, ~———(Ln(2)j-2)-L

n(j_z)=Li|_n[2(j—1)_(j—2)J

which is always positive.

Similarly, if j<n:

1 1 & 1 11”1

=— - + i
I%l J (I_l) 2] 1n i=j+1 J+|_1 2_]—1” i=j+1 J

which is always negative.

But:
n 1 n+j+11 2j1 .

=Y =32 1)—Ln(2
i§1 j+i-1 Tk k n(n+j+1)-Ln(2j)

and:

Zn: #=—ni _}~—Ln(n—j)

i-j1 )1 i1 |

which gives:

1 i 1 1 : 1 1 n+j+1
*~2i 1n 2(Ln(n+1+1) Ln(ZJ))—_—n—Ln(n—J):____an[%]

And finally, if j<n:

e e e M o = e

Let us see when this quantity becomes positive. This is the case if and only if:
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(iI-D(-2)(+i+D) _,
i’(n-J) )

This is equivalent to:
(i-9(j-2)(n+j+1)=j*(n-}j)
which simplifies to:
2j*—2j2—3jn—j+2n+2>0
Set :
y(i)=2j*-2j*-3jn—j+2n+2

We have:

N 4 —4j-3an-1
J)

Therefore, (Z—}_/is increasing; it takes the value 7—3n<0 for j=2 and the value
|
2 . . . . oy
4n°—-7n—-1>0 for j=n, so there is a unique J, such as 3:0
]
: _1+«/3n+2~x/§
- T2

Jo 5 5
y(2)=8-4n<0, we have y(j,)<0.

; this value is

, and Yy is decreasing if < J, and increasing if > j,. Since

N

o n . - .
So we conclude that if j<——, Z VW, ; < 0, and this is true also for z VW, ;, since the
iz i=2
direct contribution V,W; is negative. This proves Proposition 9.

From the estimate:

(i-1)(i—-2)(n+j+1) < 2(n-2)(n-3)

(1) T
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we deduce moreover:

1
< —Ln(2
3w, <5 L)

7. Example. - Total energy carried by W, ,

All transfer coefficients are negative:

1 (2i-1)° 1
Winn =53
2i(i-1)=(n+1)nn
. -1 -1
Energy received from V, : W, , = ~

fromV, 2<i<n:

1 1 (2i-)) 11 1 (2i-1° 1 1
2 2

2i(i—)n 2i(i-0)—-(n+0)nn n24i(i-1)(n+L)n—i(i-1) n?(n+L)n—i(i-1)

n 1 Ln(2n) Ln(2n)
d th N — =
an us ; W, T on P

n Ln(2n
So, the total energy received by W, , is z W, =~ ( ) — 1

—>0
e 2n®  2nd

8. Estimates upon the positive energy

Let us come back to the general situation. Let us denote by W}’ the positive energy carried
by each Wj (each of them receives, from the V;, both positive and negative contributions,

and W}' is the sum of the positive ones). Then, we have the estimate:

—+00 Ln
Since the series z ( ) is convergent, we can, at the end of each period, bring this
n
n=1

positive energy back to W, without changing our conclusion: It fits inside the term I, seen

above (Proposition 5).

We may now convert a statement about the lengths |, into a statement about the growth

of the barrier. This is done by the following Proposition:
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Proposition 10. - Let b(X) be a barrier, that is a positive, differentiable, strictly increas-

ing function, tending to +o0 when X —+oo. Then we have:

I
oL dx
a2
Z‘nz J b®(x)

1

Proof of Proposition 10

Let =b"" be the inverse function of the function b (this inverse exists since b is strictly

increasing). It is also positive, differentiable and strictly increasing. We have, by definition

t, =0 (n) and therefore:

=t —t =A(2n+3)- f(2n+1)~ 2,3’(2n+1):ﬁ.

So we may write:

+00

-l & 2 1
2 nzﬂ:nzb'(tn) Jyzb'(ﬁ(y)) ’

1

Set y=b(x), dy =b’(x)dx. The above integral becomes:

1 B b'(x) . o
! BB | o bL)bZ(x)

b7 (1)

which proves Proposition 10.

As an example, with the barrier b(X) = \/; , we have b(tm) =2n+3, thatist , = (2n + 3)2

and :

Ny tna

J dx__ Jd—;(:ZLn(ZN +3)

III. Lower estimate
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We will show that if the integral converges at infinity, the game may continue indefinitely:
the remaining energy does not tend to zero. More precisely, we will show that:

tN +1

3, 7 dx
E, ZCepr—?Zﬂ: szcexp _KJW
1

This part is much simpler than the previous one.

First of all, we have seen (Proposition 10 above) that the convergence of the integral is

|
equivalent to the convergence of the series Z—”z < 400, The energy left after N periods
n=1
N
willbe E, = exp(—Z—"zj if we can prove that this energy is carried, during each period,
N n

n=1

by the first eigenvector of the corresponding matrix.

Proposition 11. - Assume that, at the end of each period, we replace the first eigenvector
V of this period by the first eigenvector W of the next period, with same normalization.
Then the energy will disappear more easily with W than with V. So, if we perform this
replacement at each step and, at the end, get a non-zero energy, it means that the whole
game produces a non-zero energy.

Proof of Proposition 11

Let V be the first eigenvector during the n™ period, normalized in |, norm:

. T
2n+1

V= 2tan%(sin(n&l),...,sin(Sl)), )

When we start the (n +1)St period, it becomes V = 2tan%(sin (nSl),...,Sin(Sl),O) )

The first eigenvector of the (n +1)St period is W = 2tan %(sin ((n +1) 92) ,...,SIN (92)), with

9, =—"_.
2n+3

We will prove that the "tail" of W contains more energy than the tail of V ; in simpler
terms, W 1is closer to the barrier. More precisely, for any k <n+1, let us define the tails
made of the last kK terms; here they are, written in opposite order compared to V,W above:

V, = 2tan%(0,sin (4),-sin((k-1)9))

W, = 2tan%(sin(&z),...,sin(kgz))
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The comparison of the tails is made by the following lemma:
Lemma 12. — Forany k, k=1,...,n+1, [\/Vk|l > M|1'

Proof of Lemma 12

We use the identity:

jzk_;sin(jg)= sin(k9) —Zs(izg(:c):(ll)gl)sl)ﬁsin(g) )

We have to show that:

. (ij sin((k—1) 4 )—sin(k4)+sin(4) < tan (&j sin(kd,)—sin((k+1)3,)+sin(3,) -
1-cos(4) 2 1-cos(9,)
. L ta”; 1 o
Using the identity 1 cos (t) = sin (t) , (2) 1s equivalent to:
sin((k—1)9)—sin(k&)+sin(4) _sin(kg,)—sin((k+1)%,)+sin(%)
. < . 3
sin(9,) sin(9,)
Or:
sin((k—1)9)—sin(k9,) _sin(kd,) —sin((k+1)9,) A
sin(4) - sin(9,) @
Using the identity sin ( p) —sin(q) = 2005(%}&%%) , (4) becomes:
cos((2k —1) 4 )=cos((2k +1)4,) 5)

But the angles in (5) are smaller than 7, so the cosine is decreasing. Therefore, (5) is
equivalent to:

(2k-1)9 <(2k+1) ©)

That is:
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(2k-1)7 < (2k +1) 7
2n+1 2n+3

(7

which itself is equivalent to K <n+1, which is satisfied. This proves Lemma 12. Now,
Proposition 11 follows from Corollary 4b, Part II.

Remark. - All s(W,)—s(V,) are >0, but the sequence is not increasing. Here are the

values for n=7:

0.034, 0.057, 0.069, 0.070, 0.062, 0.046, 0.025.

The final difference is 0, since both vectors have sum equal to 1.

Here are the coordinates, for N =7, in matrix notation (first coordinate on the axis, last
coordinate near the barrier) :

coord V
0,20905693
0,19992014
0,18204588
0,15621534
0,12355744
0,08549949

0,0437048

coord W
0,18453672
0,17825254
0,16589819
0,14789437
0,12485419
0,09756225
0,06694794

0 0,0340538

Coordinates of Vand W

0,25

0,2

0,1
0
|| ]
0 |
1 2 3 4 5 6 7 8

HcoordV Mcoord W

%]

=

5]

Let us now finish the proof of Theorem 2.
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If we proceed only with the first eigenvector during each period, starting with V,,, the

11
energy becomes ﬂllfl, then Z,l'}lﬂ?'fl, then 21'1122'211,'\71, so:
E N 2 Cﬂ’il,llﬂzlz,l a '/LI\T,l

with a constant ¢ which depends only on the first step (converting the energy at the origin
into an energy carried by the first eigenvector on the first stage).

Therefore:

EN;zcexp(ﬁi Log(&h)):cexp(ﬁi hLog(&ﬂ)]zcexp{—%;

n=1 n=1

M=z
=
—

1l
N
)}

n
which proves Theorem 2.

The energy profile during the n"™ period is approximately proportional to the first eigen-

vector, and this approximation is more and more accurate when N — +oo, This means that,

during the n™ period, the energy profile (in the X variable) is proportional to
V4

2n+1’

Vn:(ﬁn(ngyuqﬂn(g)yxwﬁh,9:

As an example, we may take b(X) = &Ln(x)

Then j dx =— 1 and we obtain the estimate:
b? (X

TIEY
e “ex"{_gz [Ln1<z> “In &u)}'

In this case, the probability that the game stops at any time N does not tend to 0. There

1s a non-zero probability that the game continues indefinitely.
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