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Abstract 

 

We consider the same 1  game, with now different initial bounded fortunes. A player gets 

ruined and the game stops if his fortune reduces to 0.  

 

Our main result is an explicit expression of the probability of any situation at time ,n  in 

terms of the initial fortunes AF  and BF  (Theorem 5). We deduce the probability that A  

wins the game, and the probability that the game continues after a given time .n   

 

As we did in Part II, our approach relies upon a representation of the game in terms of 

"energy propagation", which allows us to use arguments from operator theory and special 

functions (more specifically, Chebycheff polynomials of first and second kind). 
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I. Presentation 

 

The basic settings are presented in Part I. Recall that we consider a simple random walk 

in the plane: a game, with two players. It is represented by a r.v. X  taking the values 1  

with probability 
1

2
. The player A  wins if 1X =  and then he receives 1 Euro from the 

player ,B  and conversely if 1.X = −  Each player has an initial fortune, denoted respec-

tively by AF  and .BF  The game stops if any of the players sees his fortune equal to zero. 

We will assume here that both fortunes take only even values: 2 , 2 ,A BF a F b= =  where 

,a b  are positive integers. We assume for simplicity that .a b   

 

II. A preliminary remark 

 

We have two possible descriptions of the game: 

 

1. Description 1 

 

Each player has his fortune ,A BF F  and the game starts at 0. It finishes if one of the players 

gets ruined. More precisely, we set 0 0,S =  and for 1,N   
1

N

N n

n

S X
=

= . If N AS F= − , the 

player A  is ruined and the game stops; if N BS F=  the player B  is ruined and the game 

also stops. So, mathematically speaking, the random walks starts at 0  and the game fin-

ishes when it touches one of the two barriers ,A By F y F= − = . In this description, the start-

ing point is 0 and both barriers are dissymmetric. 

 

2. Description 2 

 

The barriers are set at the symmetric values ( )2 2 + , with 1
2

a b


+
= −  and the starting 

point is ( )00,2y , with 0
2

a b
y

−
= .  

 

Quite clearly, both descriptions are equivalent, mathematically speaking. Indeed, for A  

to win, in the first description, the random walk has to climb 2b  steps, and in the second 

description it has to climb 02 2 2 y + −  steps. For B  to win, in the first description, the 

random walk has to go down 2a  steps and in the second description it has to go down 

02 2 2y + +  steps.  

 

So, we will work with description 2, which allows us to use the framework developed pre-

viously. The barriers are symmetrically set at ( )2 2 +  and the starting point is at 

( )00,2y . 
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III. Notation 

 
We refer to Part I. Instead of a random walk with multiple possible paths, we consider 

that we have the propagation of an energy, with the following rules: 

 

• At time 0,n =  the starting point ( )00,2y  receives an energy equal to 1; 

 

• At time 1,n =  this energy is divided into two: each point ( )01,2 1y +  and ( )01,2 1y −  

receives an energy equals to 
1

2
 and so on.  

More generally, the energy of a point of coordinates ( ),n k  in the plane is equal to the 

probability that the random walk hits this point. It will be denoted by ( ), .e n k  

 

As we already did in Part I, we restrict ourselves to even values of the time ( )2n . Also, we 

will need a "matrix-oriented" notation. Instead of the y − coordinate ranging between −  

and ,+  we will go downwards, starting at 1 and descending to 2 1. +  More precisely, we 

set: 

 

( ) ( )( ), 2 ,2 1x n k e n k= − + . 

 

So ( ) ( ),1 2 ,2x n e n =  (near the top barrier) and ( ) ( ),2 1 2 , 2x n e n + = −  (near the bottom 

barrier). We have the propagation rules: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
1,1 ,1 ,2

2 4

1 1 1
1, , 1 , , 1 , 2,...,2

4 2 4

1 1
1,2 1 ,2 ,2 1

4 2

x n x n x n

x n k x n k x n k x n k k

x n x n x n



  


+ = +




+ = − + + + =



+ + = + +

                           (1) 

 

They take into account the symmetric barriers ( )2 2y =  + : if a path hits any of the 

barriers, its energy is absorbed and disappears. The last non-zero values for x  on each 

vertical are ( ) ( ),1 , ,2 1 .x n x n  +  

 

The initial value is ( ) ( )0 00, 1, 0, 0 if .x y x k k y= =   (2) 

 

Let 2nW  be the vertical for 2 ,x n=  that is the set of all points 
2 ,2n kA , ,..., .k n n= −   
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IV. Matrix representation 

 
The system (1) may be represented as a matrix: 

 

( )

( )

( )

( )

( )

( )

1 1
1,1 ,10 ... ... ... 0

2 4
1,2 ,2

1 1 1
0 ... ... 0

4 2 4

1 1 1
0 0 ...

4 2 4

...

0...

1 1 1... 0 ... ... 0
4 2 41,2

1 1
1,2 1 0 ... ... ... 0

4 2

x n x n

x n x n

x n

x n





 
+   

 
 + 
 

 
 

 
 

 
 

 
 

  =  
 

 
 

 
 

 
 

 
 

 + 
  + +   
 

( )

( )

...

...

...

,2

,2 1

x n

x n





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + 

                                  (3) 

 

This is a real symmetric matrix, of size 2 1 + , denoted by .M  

 

As we already said, the first coordinate is close to the upper barrier, the last coordinate 

close to the lower barrier. 

 

The general approach is the same as in Part II, but the matrix is different. An important 

remark is that we do not need here a second change in coordinates, which makes things 

simpler. 

 

Lemma 1. - The matrix M  is positive definite. 

 

Proof of Lemma 1 

 

We have to show that, for all non-zero column-vector X  of size 2 1 + , we have 0.tX MX   

 

Let 

1

2 1

x

X

x +

 
 

=  
 
 

; we have: 
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1 2

1 2 3

1 1

2 1 2 2 1

2 2 1

1 1

2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1

4 2

i i i

x x

x x x

MX x x x

x x x

x x

  

 

− +

− +

+

 
+ 

 
 + +
 
 
 
 

= + + 
 
 
 

+ + 
 
 

+ 
 

  

 

and therefore: 

 

1 2 1 1 2 3 2 1 1

2 1 2 2 1 2 2 2 1 2 1

2 2

1 2 1

1 1 1 1 1 1 1 1
... ...

2 4 4 2 4 4 2 4

1 1 1 1 1

4 2 4 4 2

1 1

4 4

t

i i i iX MX x x x x x x x x x x x

x x x x x x x

x b x

      



− +

− + + +

+

     
= + + + + + + + + + +     
     

   
+ + + + +   
   

= + +

  

 

with ( ) ( ) ( )( )22 2

1 2 1 2 2 1

1
... ... .

4
i ib x x x x x x − += + + + + + + +   

 

So clearly 0tX MX   if they ix  are not all equal to 0. This proves Lemma 1. 

 

From this Lemma follows that all eigenvalues of M  are real, 0,  and that M  can be 

diagonalized in an orthogonal basis made of eigenvectors. 

 

Lemma 2. - All eigenvalues of M  are 1.  

  

Proof of Lemma 2 

 

Let us write the system of equations defining the eigenvalues and eigenvectors, .MX X=  
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1 2 1

1 2 3 2

1 1

2 1 2 2 1 2

2 2 1 2 1

1 1

2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1

4 2

i i i i

x x x

x x x x

x x x x

x x x x

x x x

   

  











+ −

− +

+ +


+ =


 + + =





+ + =



 + + =



+ =


                                                        (4) 

 

It may be written: 

 

( )

( )

( )

( )

( )

2 1

3 2 1

1 1

2 1 2 2 1

2 2 1

4 2

4 2

4 2

4 2

4 2

i i i

x x

x x x

x x x

x x x

x x

  

 











+ −

+ −

+

 = −


= − −




= − −


 = − −


= −

                                                                 (5) 

 

We know that 1 0x   (if 1 0,x =  all 0ix = ), so we may take 1 1.x =  Assume 1  . From the 

equation ( )2 14 2x x= −  we deduce 2 1 0x x  . More generally, the equation 

( )1 14 2i i ix x x+ −= − − gives: 

  

( )1 1 14 3i i i i i ix x x x x x− + +− = − −  −  

 

that is 1 1 .i i i ix x x x− +−  − So the sequence of consecutive differences is increasing. Since 

2 1x x , all differences are positive, the ix  are increasing and are 0.  Set 
2 1

1

i

i

S x
+

=

= ; sum-

ming all equations, we get:  

 

( ) ( )1 2 2 2 14 2S x x S S x x   +− + = − − − − , 

 

that is ( )1 2 1 4 1x x S +− − = − . But this is a contradiction: 1  , 0S   and 1 0,x   

2 1 0.x +   Lemma 2 is proved. 

 

From Lemmas 1 and 2 follows that all eigenvalues of M  are strictly between 0 and 1. 
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Proposition 3. - For 1,...,2 1j = + , the 
thj  eigenvalue 

j  is: 

 

( )
2cos

4 1
j

j



=

+
  

 

and the 
thj  eigenvector has components: 

 

( ) ( ) ( )( )( )sin ,sin 2 ,...,sin 2 1j j j jV    = +  

 

with ,
2 2

j

j



=

+
1,...,2 1.j = +  

 

Remark. – We observe that this definition of 
j  is different from the one given in Part II. 

 

Proof of Proposition 3 

 

We have 1 0x   (otherwise all jx s  are 0), so we may assume 1 1x = . We set 2 1 = − , so 

1 1−   . We set also
0 1 1 2 1 2 2 1, ,..., ,...,j jy x y x y x y x + += = = = . System (5) becomes: 

 

0

1

2 1 0

1 2

2 2 1 2 2

2 1 2

1

2

2

2

2

2

j j j

y

y

y y y

y y y

y y y

y y

  

 











− −

− −

−

=


=

 = −


 = −




= −
 =

                                                                         (6) 

 

Therefore, ( )j jy U =  where 
jU  is the 

thj  Chebyshev's polynomial of second kind, for 

0,...,2 .j =  The final equation in (6) may be written: 

 

( ) ( )2 1 22U U   − =                                                      (7) 

 

that is, with ( )cos = : 

 

( )
( )

( )
( )( )

( )

sin 2 1sin 2
2cos

sin sin

 


 

+
= . 
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We know that 1 cos 1−   , which implies ( )sin 0,   so the above equation is equivalent 

to: 

 

( ) ( ) ( )( )sin 2 2cos sin 2 1   = +                                    (8) 

 

We have: 

 

( ) ( ) ( )( ) ( )( )sin 2 2cos sin 2 1 sin 2 2 .     − + = − +  

 

Therefore, equation (8) is equivalent to: 

 

( )( )sin 2 2 0 + =                                                       (9) 

 

that is , .
2 2

j
j Z





= 

+
 

 

We are interested only in the values of cos ; moreover, the solutions 0j =  and 2 2j = +  

give 0 = , which is impossible ( 1 cos 1−   ). So, we have the solutions: 

 

,
2 2

j

j



=

+
1,...,2 1j = +                                             (10) 

 

This gives, for 1,...,2 1j = + : ( )
( )

cos cos
2 1

j j

j
 


= =

+
 and: 

 

( ) ( )
2

1 1
1 cos cos

2 2 2 1 4 1

j

j

j j  


 

 +
= = + = 

+ + 
. 

 

The eigenvector in coordinates 
jy  defined by (6) gives ( )

( )( )sin 1
cos

sin
j j

j
y U






+
= = . Af-

ter multiplication, we may take ( )( )sin 1jy j = + , 0,...,2j = . Returning to the x  coor-

dinates, this gives: 

 

( ) ( ) ( )( )1 2 2 1sin , sin 2 ,..., sin ,..., sin 2 1 .jx x x j x     += = = = +   

 

So, the 
thj  eigenvector is: 

 

( ) ( ) ( )( )( )sin ,sin 2 ,...,sin 2 1j j j jV    = +                                (11) 

 

where 
j  is given by (10). This finishes the proof of Proposition 3. 
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We already made the following remarks in Part II; they are still valid here: 

 

− The first eigenvector, 1V , has all its components real and 0 , but all other eigenvectors 

have some negative component; 

 

− It follows from the general theory of symmetric matrices, positive defined, that any 

two eigenvectors 
1 2
,j jV V  are mutually orthogonal, that is: 

 

( ) ( )
1 2

2 1

1

sin sin 0,j j

l

l l


 
+

=

=  

 

where here 
1 2

1 2,
2 2 2 2

j j

j j 
 

 
= =

+ +
.  

 

We now compute the 1l −  norm and the 2l −  norm of the eigenvectors 

 

3. Norms of the eigenvectors 

 

Proposition 4. – All eigenvectors have the same quadratic norm: 

 
2

2
1jV = +  

 

for 1,...,2 1.j = +   

 

The 
thj  eigenvector carries the energy: 

 

( )
( )

( )

1
1 11

.
4 sin

4 1

j

js V
j



−
+ −

=

+

 

 

Proof of Proposition 4 

 

Let us first compute 
2

2
.jV  We use the identity: 

 

( )
( )( )

( )

2 1
2

1

sin 4 33 1
sin

4 4 sink

t
kt

t

 


+

=

+
= + −  

 

which gives: 

 

( )( )
( )

2 1
2

2

2
1

sin 4 33 1
sin

2 2 4 4 sin

jj

j

k j

k
V

  


 

+

=

+ 
= = + − 

+ 
  
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But: 

 

( )( )
( )

( )sin 4 3
sin 4 3 2 2

1
sin

sin
2 2

j

j

j

j




  





 
+ + + = = −
 
 + 

  

 

since: 

 

( )4 3 2
2 2 2 2

j j
j

 
 

 
+ = −

+ +
  

 

Let us now compute ( )js V . Apply the matrix M  to the eigenvector 
jV : by definition, we 

get 
j j jMV V=  and the loss of energy is ( ) ( )1 j js V− . But this loss of energy comes from 

the first and the last coordinates only: 

 

− The first coordinate gives a loss of ( )
1 1

sin sin
4 4 2 2

j

j



=

+
; 

 

− The last coordinate gives a loss of : 

 

( )( ) ( )
11 1 2 1 1 1

sin 2 1 sin sin 1 sin .
4 4 2 2 4 2 2 4 2 2

j

j

j j
j j

  
   

  

−     +
+ = = − = −     

+ + +     
 

 

So, the total loss is ( )( )11
1 1 sin

4 2 2

j j



−  
+ −  

+ 
.  

 

So, we get ( ) ( ) ( )( )11
1 1 1 sin

4 2 2

j

j j

j
s V






−  
− = + −  

+ 
.  

 

We know that 
( )

2cos
4 1

j

j



=

+
, so  

( )
21 sin

4 1
j

j



− =

+
, which gives:  

 

( )
( )( )

( )

( )

( )

1

1

2

1
1 1 sin

1 14 2 2 1

4sin sin
4 1 4 1

j

j

j

j

s V
j j





 

 

−

−

 
+ −   + −+ = =

+ +

 

 

which proves our claim. We observe that ( )js V  are always 0  ; the non-zero ones are 

decreasing. 
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This finishes the proof of Proposition 4. 

We have completely characterized the matrix, its eigenvalues and eigenvectors. Now, we 

can proceed to the evaluation of the energy at each step. 

 

4. The energy at each step 

 

Recall that both fortunes take even values: 2 , 2 ,A BF a F b= =  that 1
2

a b


+
= −  and that, 

in usual coordinates, the starting point is ( )00,2y , with 0
2

a b
y

−
= . We need to proceed to 

matrix coordinates; we set 0 1,u y= − +  so, when 0y  changes, u  may take any value be-

tween 1 and 2 1 + . The value 1u =  corresponds to 0y =  and the value 2 1u = +  to 

0 .y = −  We notice that 1 1
2 2

a b a b
u b

+ −   
= − − + =   
   

. 

 

The parameter u  will be called "Initial Fortune Characteristic" (in short IFC). If 1,u = +  

both players are equal, if 1,..., ,u =  the player A  has the initial advantage; if 

2,...,2 1u  = + + , the player B  has the initial advantage. 

 

Theorem 5. - Let ,u  1 2 1,u   +  be the IFC. At each step, the energy is: 

 

( ) ( ) ( )
2 1

2

1

1
, sin sin cos

1 2

jn

j j

j

x n k u k
 

 


+

=

 
=  

+  
  

 

with 
2 2

j

j



=

+
, 1,...,2 1j = + . 

 

Proof of Theorem 5 

 

We start with the initial vector 0X  defined by ( ) ( )0 01, 0 if .X u X k k u= =    

 

We decompose this vector on the basis of eigenvectors. We write 
2 1

0

1

.j j

j

X V



+

=

=   

 

Since the eigenvectors are orthogonal, the coefficients 
j  may be computed simply: 

 

( )0

2

2

sin,

1

jj

j

j

uX V

V






 
= =

+
  

 

using Proposition 3. Then, at the 
thn  step (time 2n ), the vector nX  is : 
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2 1 2 1 2 1

0

1 1 1

n n n n

n j j j j j j j

j j j

X M X M V M V V
  

   
+ + +

= = =

= = = =     

 

which gives for the 
thk  coordinate: 

 

( ) ( ) ( )
2 1

2

1

1
, sin sin cos

1 2

jn

j j

j

x n k u k
 

 


+

=

 
=  

+  
  

 

which proves Theorem 5. 

 

One can give an equivalent formulation of Theorem 5, using binomial coefficients: 

 

Theorem 6. – For all , , ,u k n  the energy is: 

 

( )
( ) ( )2

2 21
,

4 1 4 12 n
m

n n
x n k

n k u m n k u m 

    
= −     + − + + − − + +    

  

 

(recall that we use the convention 0
n

m

 
= 

 
 if 0m   or if m n ) 

Proof of Theorem 6 

 

We use the linearization formula: 

 

( )( )
2

2

2
0

21
cos cos .

2 2

n
jn

jn
l

n
n l

l




=

  
= −  

   
  

 

So, we write, from Theorem 5: 

 

( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

2 12
2

0 1

2 12

0 1

2 12

0 1

2
2 1 , , sin sin cos

21
cos cos

2

21
cos cos

2

n
n

j j j

l j

n

j j

l j

n

j j

l j

n
x u n k u k n l

l

n
u k n l

l

n
u k n l

l







   

 

 

+

= =

+

= =

+

= =

 
+ = − 

 

 
= − − − 

 

 
− + − 

 

 

 

 

 

and thus: 

 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

2 1 2 12 2
2 2

0 1 0 1

2 1 2 12 2

0 1 0 1

2 2
2 1 , , cos cos

2 2
cos cos

n n
n

j j

l j l j

n n

j j

l j l j

n n
x u n k u k n l u k n l

l l

n n
u k n l u k n l

l l

 

 

  

 

+ +
+

= = = =

+ +

= = = =

   
+ = − − + + − + −   

   

   
− + − + − + + −   

   

   

   

 

 

So, we have four terms and ( ) ( )2 2

1 2 3 42 1 , , .n x u n k T T T T+ + = + − −   
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But 1 2.T T=  Indeed, one may exchange the roles of u  and k :the number of paths going 

from point A  to point ,B  not touching the barriers, is equal to the number of paths going 

from B  to .A   

 

Also, 3 4.T T=  Indeed, the summation upon l  runs from 0  to 2 ,n  so both n l− +  and n l−  

run from n−  to .n  So, we have: 

 

( ) ( )2 1

1 32 1 , , .n x u n k T T+ + = −  

 

Let us study the first term: ( )( )
2 12

1

0 1

2
cos .

n

j

l j

n
T u k n l

l




+

= =

 
= − − + 

 
   We use the following 

formulas: 

 

( ) ( )( )
2 1

1

1
cos 1 1

2

k

j

j

k



+

=

= − − +   if k  is not an even multiple of 2 2 +  (1) 

 

( )
2 1

1

cos 2 1j

j

k


 
+

=

= +  if k  is an even multiple of 2 2 +  (including 0). (2) 

 

We have to study if ( )2 2 2u k n l m − − + = + , m integer. This is equivalent to: 

 

( )2 2 2 .l n k u m = + − + +  

 

Since 0 2 ,l n   we need: 

 

( )0 2 2 2n k u m  + − + + , 
4 4

n k u
m



− − +


+
 

 

and: 

 

( )2 2 2 2 ,n k u m n+ − + +  .
4 4

n k u
m



− +


+
 

 

Let 1 2,m m  be these two bounds. Let ( ) 1 1 2, 2 2 2 ;m mL l l n k u m m m m= = + − + +   . 

 

We have: 
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( )( ) ( )( )

( )( ) ( )
( )

( ) ( )

2

1

1

2

1

1

1 1

2 1 2 12

1

0 1 1

2

0

2 2

0 0

22
cos cos

221
1 1 2 1

4 12

2 21 1
1 1

2 2

mn

j m j

l j m m jm
l L

mn
u k n l

l m m
l L

n n
u k n l

l l
l L l L

nn
T u k n l u k n l

ll

nn

n k u ml

n n

l l

 

 




+ +

= = = =


− − +

= =


− −

= =
 

  
= − − + + − − +  

   

  
= − − + + +   

+ − + +   

   
= − − − −  

   

   

 

  ( )
( )

2

1

2
2 1

4 1

m

m m

n

n k u m


=

 
+ +  

+ − + + 


 

 

In order to simplify the notation, we set 
( )

2

1

1

2

4 1

m

m m

n

n k u m =

 
 =  

+ − + + 
 . We have: 

 

( ) ( ) ( )
2

1

1

2 2

0 0

22 2
1 1 1 m

mn n
n l n l n l

l l m m m
l L

nn n

ll l

− − −

= = =


    
− = − − −    

     
     

 

( )
2

0

2
1 0

n
n l

l

n

l

−

=

 
− = 

 
   

 

( ) ( )
2

1

1

2
1 1m

m
n l k u

m m m

n

l

− −

=

 
− = −  

 
   

 

So, we get: 

 

( ) ( )
2

1

1

2
1 1m

m
n l k u

m m m

n

l

− −

=

 
− = −  

 
  

 

( ) ( )

1

2

1

0

2
1 1

n
n l k u

l
l L

n

l

− −

=


 
− = − −  

 
  

 

The same way: 

 

( )

2

1

1

2 2
2

1

0 0

22 2
2

4 1

mn n
n

l l m m
l L

nn n

n k u ml l = = =


    
= − = −     

+ − + +     
     

 

( ) ( ) ( )2 2 1

1 1 1 1 1

1 1
2 2 1 2 2 2

2 2

n nT  −=  − −  + +  = − + +    

 

We now study the term ( )( )
2 12

3

0 1

2
cos

n

j

l j

n
T u k n l

l




+

= =

 
= + − + 

 
  . The computations are 

identical, except that k  is replaced by k− .  
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We introduce: 

 

3
4 4

n k u
m



 − + +
=  + 

 (ceiling: smallest integer greater than or equal to a number) and: 

4 int .
4 4

n k u
m



 + +
=  

+ 
 

 

Let ( ) 3 3 4, 4 1 ;m mL l l n k u m m m m= = − − + +   . The same computation as above gives: 

 

( )2 1

3 32 2 2nT −= − + +   

 

with 
( )

4

3

3

2

4 1

m

m m

n

n k u m =

 
 =  

− − + + 
 . Finally: 

 

( ) ( ) ( ) ( )( ) ( )( )2 1 2 1 2 1

1 3 1 3 1 32 1 , , 2 2 2 2 2 2 2 1n n nx u n k T T   + − −+ = − = − + +  − − + +  = +  −  

 

and: 

 

( ) 1 3, , .
2n

x u n k
 − 

=   

 

We observe that, in 1,  the quantity ( )4 1n k u m + − + + runs from the closest integer to 

0 to the closest integer to 2n , so we may simply write: 

 

( )1

2

4 1m

n

n k u m 

 
 =  

+ − + + 
  

 

( )3

2

4 1m

n

n k u m 

 
 =  

− − + + 
  

 

This proves Theorem 6. 

 

5. Advantage for each player 

 

Let ,u  1 2 1,u   +  be the IFC. We define: 

 

( )AP n− : the probability that A  wins at a time n ; 

( )AP n+ : the probability that A  wins at a time n ; 

( )BP n− : the probability that B   wins at a time n ; 

( )BP n + : the probability that B   wins at a time n ; 
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( )E n : energy at time ,n  equal to the probability that the game is not finished at time .n   

 

Proposition 7. – For any n : 

 

( ) ( )
1

0

1
,1

4

n

A

m

P n x m
−

=

− =  , ( ) ( )
1

,1
4

A

m n

P n x m
+

=

+ =   

( ) ( )
1

0

1
,2 1

4

n

B

m

P n x m 
−

=

− = + , ( ) ( )
1

,2 1
4

B

m n

P n x m 
+

=

+ = +  

( ) ( )
2 1

1

,
k

E n x n k
+

=

=   

 

Proof of Proposition 7 

 

Indeed, for A  to win, the game must reach the upper barrier before time .n  But, at each 

step, the probability to do this is 1/ 4  of the probability to be at the level 1 ; the same holds 

for .B  The probability that the game is not finished at time n  is simply the sum of the 

( ),x n k  upon all values of k  on the corresponding vertical. This proves Proposition 7. 

 

We now investigate the overall issue of the game: what is the probability that A  wins? We 

will consider later the probability to win before a given time. 

 

First, we observe that, as a consequence of Theorem 5, the probability that the games 

continues up to time n  tends to zero with n : the game cannot continue indefinitely. Let 

us denote by AP  the probability that A  wins, and similarly BP  for ,B  so 1.A BP P+ =   

 

Theorem 8. - Let ,u  1 2 1,u   +  be the IFC. We have: 

 

1
1

2 2 2

A
A

A B

u F
P

F F

+
= − =

+ + +
 

 

and: 

 

1
.

2 2 2

B
B

A B

u F
P

F F

+
= =

+ + +
 

 

Proof of Theorem 8 

 

The probability that A  wins is necessarily linear in .u Indeed, if 1u = +  (both fortunes 

are equal), the probability is 
1

.
2

  

 

If 
1

2
u

 +
= , two things may happen, each with probability 

1

2
: either the random walk 

touches the upper barrier ( A  wins) or it touches the middle line (equal fortunes), and in 



BB SRW Part 3, 2019/07 17 

the latter case we are back to the previous case. So the probability for A  to win when 

1

2
u

 +
=  is 

1 1 3

2 4 4
+ = ; repeating this dichotomy argument shows that the probability that 

A  wins is linear in .u   

 

For 2 2,u = +  both quantities are equal to 0. For 1,u =  by Proposition 7,

( )
0

1
,1

4
A

m

P x m


=

=   

and by Theorem 5: 

 

( )
( )22 1 2 1

2 2

1 0 1 2

2 1
2

1

sin1 1 1 1
sin cos

4 1 2 4 1
1 cos

2

1 2 1
cos

1 2 2 2

jjn

A j

jj n j

j

j

P
 






 

 

 

+ ++

= = =

+

=

 
= = 

+ +    −  
 

  +
= = 

+ + 

  



 

 

which is also the value of 1
2 2

u


−

+
 for 1u = ; this proves Theorem 8. 

 

We now give quantitative estimates for ( ) ( ),A AP n P n− + , and the same for .B  Obviously, 

( ) ( ) ( ) 1A BP n P n E n− + − + =  for all n ; all these probabilities depend on ,u  initial fortune, 

and on ,  value of the barriers. 

 

Obviously also, ( )limA n AP P n→+= − . 

 

Proposition 9. – We have, for any n  : 

 

( )
( )2 1

2 1

1

sin1
cos .

2 2 2
sin

2

j jn

A

jj

u
P n

  



+
+

=

 
+ =  

+    
 
 

  

 

Let kU  be the family of Chebyshev's polynomials of second kind. We have the equivalent 

formulation: 

 

( ) ( )
2 1

2 1

2 1

1

1

2 2

n

A u j j

j

P n U y y




+
+

−

=

+ =
+
 , with cos .

2

j

jy
 

=  
 

 

 

Proof of Proposition 9 

 

We compute the probability that A  wins at a time ,n  which happens if the random walk 

touches the upper barrier. Using Theorem 5, and Proposition 7, we have: 
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( ) ( ) ( )
2 1

2

1

1 1
sin sin cos

4 1 2

jm

A j j

j m n

P n u
 

 


+ +

= =

 
+ =  

+  
   

 

Using the identity 

2 2

2

2 2

cos cos
2 2

cos ,
2

1 cos sin
2 2

j jn n

jm

j jm n

 



 

+

=

   
   

     = = 
     −    
   

  we get: 

 

( )
( ) ( )2 1

2

1 2

sin sin1 1
cos .

4 1 2
sin

2

j j jn

A

jj

u
P n

   



+

=

 
+ =  

+    
 
 

  

Replacing sin 2sin cos
2 2

j j

j

 
 =  proves the first part of Proposition 9. In order to prove 

the second part, recall that the 
thk  Chebyshev' polynomial of the second kind ( )kU x  sat-

isfies: 

 

( )( )
( )( )sin 1

cos .
sin

k

k
U






+
=   

 

Corollary 10. – For all n : 

 

( )
( )2 1

2 1

1

sin1
1 cos

2 2 2 2 2
sin

2

j jn

A

jj

uu
P n

  

 

+
+

=

 
− = − −  

+ +    
 
 

  

 

This is an obvious consequence of the previous Propositions. The probability that A  wins 

before time n  is of course increasing with .n  We now study the probability that the game 

continues after step .n   

 

6. Probability that the game continues 

 

Proposition 11. –We have, for any ,u n : 

 

( )
( ) 2 12 1 2 1

2 10

sin1
cos

1 2
sin

2

nl l

ll

u
E n

  



++ +

+=

 
=  

+    
 
 

  

 

For 0,..., ,l =  we set 2 1cos
2

l
lz

 + 
=  

 
. Let kU  be the family of Chebyshev's polynomials of 

second kind. We have the identity: 
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( ) ( ) 2 1

2 1

0

1

1

n

u l l

l

E n U z z




+

−

=

=
+
  

 

Proof of Proposition 11 

 

Using Theorem 5, let us compute the probability that the game is not finished at time .n  

We have: 

 

( ) ( ) ( ) ( )
2 1 2 1 2 1

2

1 1 1

1
, sin cos sin .

1 2

jn

j j

k j k

E n x n k u k
  

 


+ + +

= = =

 
= =  

+  
    

 

The identity: 

 

( )
( )2 1

1

cos1 1 2sin
2

sin
2

j
j

j
jk

k







+

=

− −
=  

 

gives: 

 

( )
( ) ( )2 1

2 1

1

sin1 11
cos

1 2 2
sin

2

j

j jn

jj

u
E n

  



+
+

=

− −  
=  

+  
   

 

But 
( )1 1

0
2

j
− −

=  if j  is even, 1=  if j  is odd. Set 2 1j l= + ; when 1,...,2 1j = + , we have 

0,..., .l =  We obtain: 

 

( )
( ) 2 12 1 2 1

2 10

sin1
cos .

1 2
sin

2

nl l

ll

u
E n

  



++ +

+=

 
=  

+    
 
 

  

 

So, with 2 1cos
2

l
lz

 + 
=  

 
, we have: 

 

( ) ( ) 2 1

2 1

0

1
.

1

n

u l l

l

E n U z z




+

−

=

=
+
  

 

This proves Proposition 11. 

 

We observe that ( )E n  is not modified if u  is replaced by 2 2 u + −  (exchanging the roles 

of A  and B ). Indeed: 
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( )( ) ( ) ( )2 1 2 1 2 1sin 2 2 sin sinl l lu u u    + + ++ − = − = . 

 

7. Examples 

 

We now turn to some numerical examples, in order to understand the shapes of the various 

profiles; they may look surprising at first sight. Let us assume first 7. =  We consider 3 

cases: 1u =  (high initial fortune for A ), 1u = +  (equal fortunes for A  and B ), 2 1u = +   

(low initial fortune for A ). 

 

Case 1: 1u =   

 

By Theorem 8, the probability that A  wins the game is 
2 1 15

0.9375
2 2 16

AP




+
= = =

+
.  

For the probabilities to win before a certain time, we find: 

 

10n =   ( )10 0.66AP −    

20n =   ( )20 0.755AP −   

50n =  ( )50 0.842AP −   

100n =  ( )100 0.888AP −   

 

For the probabilities to continue until a certain time, we find: 

 

10n =   ( )10 0.336E    

20n =   ( )20 0.245E   

50n =  ( )50 0.156E   

100n =  ( )100 0.094E   

 

Case 2: 1u = +   

 

By Theorem 8, the probability that A  wins the game is 
1 1

2 2 2
AP





+
= =

+
.  

 

For the probabilities to win before a certain time, we find: 

 

10n =   ( )10 0.66AP −    

20n =   ( )20 0.755AP −   

50n =  ( )50 0.842AP −   

100n =  ( )100 0.888AP −   

 

For the probabilities to continue until a certain time, we find: 
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10n =   ( )10 0.336E    

20n =   ( )20 0.245E   

50n =  ( )50 0.156E   

100n =  ( )100 0.094E   

 

Let us draw explicitly the various profiles of energy, depending on the initial fortune. 

 

For 10:n =   

 

 
 

In black: profile for 1u =  (strong A ), in blue: profile for even strengths, in red, profile for 

weak .A   

 

For 20n = : 

 
 

For 50n = : 
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We see here that the profiles for A  initially strong and A  initially weak tend to coincide. 

 

For 100n =  : 

 

 
 

and here, for large ,n  they are almost identical, and well below the profile for A  initially 

identical to .B  This looks strange at first sight, but in fact, if initially A  is very strong, 

for instance 1,u =  the only paths which will reach the time 100 are the ones which meet 

the middle line, for which .A B=  In other words, if A  is very rich compared to ,B  he 

should win rather early, otherwise, very likely, both fortunes will be equal. 

 

Let us state this as a Proposition: 

 

Proposition 12. - When ,n→+  the profiles for any u  tend to coincide. 

 

Proof of Proposition 12 

 

Let us prove it for the two most different profiles: 1u =  and 2 1u = + . In the first case, 

the energy profile is: 

 

( ) ( ) ( )
2 1

1

1

1
, sin sin

1

n

j j j

j

x n k k


  


+

=

=
+
   

 

and in the second case: 

 

( ) ( )( ) ( )
2 1

2 1

1

1
, sin 2 1 sin

1

n

j j j

j

x n k k


    


+

+

=

= +
+
   
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So, the difference is: 

 

( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( )

2 1

1

2 1

1

1
, sin sin 2 1 sin

1

2
sin cos 1 sin

1

n

j j j j

j

n

j j j j

j

d n k k

k





    


    


+

=

+

=

= − +
+

= +
+





  

But ( )1
2

j

j
 + = , so ( )( )cos 1 0j + =  if j  is odd, and ( ) 11

j
= −  if 12 .j j=  Therefore: 

( ) ( ) ( ) ( )1

1 1 1

1

2 2 2

1

2
, 1 sin sin

1

j n

j j j

j

d n k k


  
 =

= −
+
   

 

We have 
1

1 1 1
2 1

2

2 2 1 1
j

j j j
j

    
 

  
= = = −

+ + +
; therefore: 

 

( ) ( ) 1

1

11 1
2 1sin sin 1 sin

1 1

j

j

j j
j

 
 

 

−   
= − = −   

+ +   
  

 

and finally: 

 

( ) ( ) 1

1

1

1 1
2

1

2
, 1 sin sin

1 1 1

j n

j

j

j j
d n k k

  


  =

   −
= −    

+ + +   
 . 

 

The first term in the sum involves 
2

n , whereas the expressions of 1x  and 
2 1x +

 involve 
1 ;n

the difference between both will tend to 0, when ,n→+  more quickly than each term 

separately. This proves our Proposition. 

 

We observe that ( )AP n+  is exponentially decreasing with .n  Its shape, depending on ,u  

for fixed ,n , is also rather surprising : 

 

 

Fig.: the graph of ( )AP n+ , for 7, =  35,n =  as a function of .u  
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Fig.: the graph of ( )AP n+ , for 17, =  70,n =  as a function of .u  

The low values for u  small (when A  has the largest initial fortune) come from the fact 

that, under these conditions, A  should win at an early stage. 

 

Large fortunes 

 

Let us now consider the case of large, but different, initial fortunes: 2 000,AF =  1 000.BF =  

Let us compute the probabilities for 100 000, 500 000,1000 000.n =  In each case, we com-

pute the probability that A  (resp. B ) wins before n  and after n  : 

 

100 000n =   Proba wins before n Proba wins after n 

A 0.025   0.641   

B 0.000122   0.333   

 

500 000n =   Proba wins before n Proba wins after n 

A 0.317   0.350   

B 0.0454   0.288   

 

1000 000n =   Proba wins before n Proba wins after n 

A 0.479   0.188   

B 0.153   0.181   

 

These results are quite interesting. They show that, if one waits long enough, the proba-

bilities to win the game after n  tend to be equal. In the case of different fortunes (here, A  

is twice as rich as ,B so his probability to win is roughly 2/3), A  should win at an early 

stage, otherwise the game becomes more balanced. 

 

8. Asymptotic profile for a general initial situation 

 

Assume now that, according to what we saw in Part I, we start with a general initial dis-

tribution of energy on the y  axis, denoted by ,iu  1,...,2 1.i = +  The question is: what do 

we get asymptotically, when n→+  ? 

 

The answer to this question follows easily from Theorem 5 above: 
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Proposition 13. – Asymptotically, when ,n→+  the energy at position k  is equivalent 

to ( )1 1sin nk C  , with ( )
2 1

1

1

1
sin

1
i

i

C u





+

=

=
+
  and, as before, 

2

1 cos ,
4 4





=

+
 1 .

2 2





=

+
  

 

Proof of Proposition 13 

 

This is an immediate consequence of Theorem 5 above, since asymptotically only the first 

term in the sum remains.  

 

Here is an example, in the case 5 =  : 

 

Shape of the asymptotic energy profile, when 5 =  

 

The interesting fact is that this shape is independent of the initial energy, up to the con-

stant factor C  defined above. 

 

V. Counting the paths 

 

Just as we did in Part II, let us count the paths which reach any vertical 2nW  when the 

barrier is set at 2 2. + The times under consideration are all even times ( 2n ). 

 

If we look at the 3VRP (Three-Value Random Process), its values (which exist only at even 

times) must be in the interval  2 ,2 − ; the 3VRP is confined in this interval. The RW, 

which has values at all times, is confined in the interval  2 1,2 1 − − + . As we did in Part 

II, we may consider 4 types of paths: 

 

− Those which touch the upper boundary, not the lower boundary (number 1N ); 

− Those which touch the lower boundary, not the upper boundary (number 2N ); 

− Those which touch neither the lower nor the upper boundaries (number 3N ); 

− Those which touch both boundaries (number 4N ). 

 

These four sets are disjoint, and their union is equal to the set of all confined strips.  

 

If we consider only even times, counting is easy, because we work directly with the 3VRP. 

In order to determine cN , we put the barriers at ( )2 2 + , as we did here; let us denote 
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by ( )2 ,2N  −  the number of paths confined in the strip  2 ,2 − ; then 

( ) 2

22 ,2 2 ,n

nN E − = where 2nE  is the energy, computed above, which reaches the vertical 

2 .nW  More specifically, if M  is the matrix defined in § IV above, the energy remaining at 

time 2n  is 2 0 1

n

nE M X=  , where 0X  has "1" at the 1st +  place, 0 elsewhere. 

 

If we repeat the same argument with the upper barrier at 2  and the lower barrier at 

2 2− −  (starting point at 0), we obtain the number of strips confined in the range 

 2 ,2 2 − − , ( )2 ,2 2N  − − . Then the difference ( ) ( )2 ,2 2 ,2 2N N   − − − −  is the 

number 1N  of strips, confined in  2 ,2 , −  which touch 2  at least once. 

 

The same way, if we repeat the same argument with the upper barrier at 2 2 +  and the 

lower barrier at 2−  (starting point at 0), we obtain the number of strips confined in the 

range  2 2,2 − + , ( )2 2,2N  − + . Then the difference ( ) ( )2 ,2 2 2,2N N   − − − +  is 

the number 2N  of strips, confined in  2 ,2 , −  which touch 2−  at least once. 

 

If we shrink both barriers, putting them at 2 , we obtain the number 3N  of strips which 

are confined in  2 2,2 2 − + − , that is which do not touch any of the boundaries. 

 

And finally, the number of strips 4N  which touch both boundaries are obtained from the 

difference ( )4 1 2 3cN N N N N= − + + . 

 

For instance, when 8,n =  2, =  the matrix M  has size 5 and 46 732cN = ; here is the 

repartition: 

 

Total number of paths 46 732 

Touch upper, not lower   4 365 

Touch lower, not upper   4 365 

do not touch upper nor lower 38 000 

Touch both          2 

 

In order to consider all times, not just even times, we would have to develop a theory, 

analogous to the one presented here, where the barriers would be put at odd numbers. 

 

Remark. – One may wonder if the reflection principle might be of any use in counting the 

paths touching both the upper and lower barrier. This idea is described by the following 

figure: 
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Fig.: paths touching both barriers and paths obtained by symmetry 

 

Let us consider the paths from O  to ,F  touching the upper barrier in G  and the lower 

barrier in .M  One can use a symmetry to build the path GA  from GO  and to build the 

path MB  from .MF  So, this way, one obtains a correspondence between the paths from 

O  to ,F  touching the barriers at ,G M  respectively, and all paths from A  to ,B  which 

are easy to count. Unfortunately, the paths from A  to B  are not necessarily restricted to 

the strip after the point ,G  as the following picture shows: 

 

 
 

Fig.: difference between both sets of paths 

 

So, in fact, there are more paths from A  to B  than paths from O  to ,F  contained in the 

strip, touching both barriers. 


