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Abstract 

 

The basic settings are the same as in Part I, but here each player has an identical initial 

fortune, and the game stops if one of the players gets ruined. 

 

We consider a 1  game, with identical initial fortunes. Using a new, energy-based, ap-

proach, we investigate the value of the fortune of each player after n  games. We give a 

complete description of each possible value and its probability; the tools used are Cheby-

chev's polynomial of first and second kind, operator theory and trigonometry. We also in-

vestigate the asymptotic behavior when n→+ : the profile of each fortune is concave, 

and the total energy tends to 0 exponentially fast.  

 

This behavior is quite different from the case of unbounded initial fortunes, or bounded 

fortune for one of the players only. 
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I. Presentation 

 
The basic settings are defined in Part I. Recall that we consider a simple random walk in 

the plane: a game, with two players. It is defined by a r.v. X  taking the values 1  with 

probability 
1

2
. The player A  wins if 1X =  and then he receives 1 Euro from the player 

,B  and conversely if 1.X = −  Both players have an initial fortune denoted by ,F  same for 

both. The game stops if any of the players sees his fortune equal to zero. The question is: 

what is the probability distribution of the earnings after n  steps? 

 

II. Notation 

 

We refer to Part I. We set 0 0,S =  and for 1,N   
1

N

N n

n

S X
=

= . Instead of a random walk 

with multiple possible paths, we consider that we have the propagation of an energy, with 

the following rules: 

 

• At time 0,n =  the origin receives an energy equal to 1; 

 

• At time 1,n =  this energy is divided into two: each point ( )1,0  and ( )1,0−  receives an 

energy equals to 
1

2
 and so on.  

More generally, the energy of a point of coordinates ( ),n k  in the plane is equal to the 

probability that the random walk hits this point. It will be denoted by ( ),e n k . 

 

As we already did in Part I, we restrict ourselves to even values of the time ( )2n . We 

defined in Part I: 

 

( ) ( ), 2 ,2f n k e n k=  

 

with the general propagation rule, for 1k  : 

 

( ) ( ) ( ) ( )
1 1 1

1, , 1 , , 1 .
4 2 4

f n k f n k f n k f n k+ = − + + +  

 

Due to the barrier, this propagation rule will of course be modified: We insert the symmet-

ric barriers ( )2 1 ;y =  +  the reason why we work here with odd values will be apparent 

later. We consider that if a path hits any of the barriers, its energy is absorbed and disap-

pears. So, our original question may be stated as: Given a time ,n  what is the distribution 

of energy on the vertical x n=  ? 

 

 



BB SRW Part 2, 2019/08 3 

We will restrict ourselves to the upper half-plane, since, by symmetry, the results are 

identical in the lower half plane. We first consider the simple case 1. =   

 

III. Case 1 =   

 

The barrier is at the value 3.  At the time 2,n =  the energy distribution is: ( )
1

2,2
4

e = , 

( )
1

2,0
2

e = , ( )
1

2, 2
4

e − =  (the barrier plays no role). So, we get ( )
1

1,1
4

f = , ( )
1

1,0
2

f =  and 

we have the recurrence relations: 

 

( ) ( ) ( )( )
1

1,0 ,0 ,1
2

f n f n f n+ = + , ( ) ( ) ( )( )
1

1,1 ,0 ,1 .
4

f n f n f n+ = +  

 

As we already did in Part I, we set ( ) ( )( )
1

,0 ,1
2

nx f n f n= + . Then: 

 

( ) ( )( )1

1 1 1 1 3
1,0 1,1

2 2 2 4 8
x f f

 
= + = + = 

 
. 

 

We obtain the equations: 

 

( )1,0 nf n x+ = , ( )
1

1,1
2

nf n x+ = ,  
1

1 1 3

2 2 4
n n n nx x x x+

 
= + = 

 
, which gives 

1 3
.

2 4

n

nx
 

=  
 

 

 

So, the energy profile at time 2n  is: 

 

( ) ( )
1

1

1 3
2 ,0 ,0

2 4

n

ne n f n x

−

−

 
= = =  

 
  

 

( ) ( ) ( )
1

1

1 1 3
2 ,1 2 , 1 ,1

2 4 4

n

ne n e n f n x

−

−

 
= − = = =  

 
  

 

The total energy at the instant 2n  is the sum of all terms, that is ( )
1

3
2

4

n

E n

−

 
=  
 

; it is 

exponentially decreasing. 
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IV. General case, 1    

 

A. Notation 
 

Let 2nW  be the vertical for 2 ,x n=  that is the set of all points 
2 ,2n kA , 0,..., .k n=   

 

B. Basic equations 
 

We have the initial values: 

 

( )0,0 1f = , ( )0, 0f k =  for 1,..., .k =   

 

The recurrence equations are: 

 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
1,0 ,0 ,1

2

1
1, , 1 2 , , 1 , 1,..., 1

4

1
1, , 1 ,

4

f n f n f n

f n k f n k f n k f n k k

f n f n f n



  


+ = +




+ = − + + + = −



+ = − +

                 (1) 

 

Recall that the barrier is set at ( )2 1 + , so the last non-zero value for f  on each vertical 

is ( ), .f n   

 

We first study the variation of energy, at a given time, on each vertical. 

 

C. Decrease of the energy on each vertical 
 

Lemma 1. - For a given time ,n  the energy is decreasing as a function of k :  

 

( ) ( ), , 1f n k f n k + , 0k  . 

 

Proof of Lemma 1 

 

This is true for 0n = ; let us admit the result for n  and prove it for 1n+ . 

 

We have: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1

1,1 ,0 ,1 ,2 ,0 ,1 1,0
4 2 4 2 2

f n f n f n f n f n f n f n+ = + +  + = +   

 

since ( ) ( ),2 ,0f n f n  by the recurrence assumption. For 1 2k   − : 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 1 1
1, 1 , , 1 , 2

4 2 4

1 1 1
, 1 , , 1

4 2 4

1,

f n k f n k f n k f n k

f n k f n k f n k

f n k

+ + = + + + +

 − + + +

= +

  

 

Finally, the property ( ) ( )1, 1, 1f n f n +  + −  comes from: 

 

( ) ( ) ( ) ( ) ( )
1 1 1 1 1

, 1 , , 2 , 1 ,
4 4 4 2 4

f n f n f n f n f n    − +  − + − +  

 

which is clear. So, Lemma 1 is proved. 

 

Corollary 2. - Let m n  be two instants; let ( )2 ,2 ,A m k  0,..., ,k =  be points on the 2
thm  

vertical 2mW  and let ( )2 ,0B B n=  be the point on the x  axis at time 2 .n  Assume we put 

energy 1 at one of the points ( )2 ,2 ,A m k  0,..., .k =  The energy received by B  will be max-

imal if this energy is put at ( )2 ,0A m . In fact, the energy received by B  is a decreasing 

function of .k   

 

Proof of Corollary 2 

 

This is a simple consequence of Lemma 1, because if we put energy 1 at ( )2 ,2 ,A m k  the 

energy received by B  is the same as the energy received by ( )2 ,2A m k  if we put energy 1 

at .B   

 

Corollary 3. - Assume we have any distribution of energy 2mE  on the vertical 2mW . Then 

the energy received by B  will be larger if all this energy is concentrated at the single point 

0.A  

 

This is a clear consequence of the previous Corollary. There is a more general statement: 

 

Corollary 4. - Let m n  be two instants, and let ( )1 1,A A m k=  and ( )2 2,A A m k=  be two 

points on the same vertical, with 1 2 ,k k  both carrying energy 1. Then, on the vertical 2 ,nW  

the energy coming from the first point is larger than the second, which means that the loss 

of energy is larger in the second case. 

 

Another equivalent formulation is: 
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Corollary 4.b - Let m n  be two instants, and let ,V W  be two distribution of energies at 

time ,m  with same sum. Assume that for any ,k  ( ) ( )
i k i k

W i V i
 

   (the vector W is more 

concentrated than V  near the barrier). Then the energy sent by W  to the vertical at time n  

is smaller than the energy sent by .V   

 

This corollary is quite intuitive. The second distribution is globally closer to the barrier, 

so the loss of energy is larger. Another way to say this is as follows: take any distribution 

of energy and move any quantity closer to the x  axis: this is a "protective" move, in the 

sense that there will be less energy lost in the future. 

 

We now turn to the behavior on the horizontal direction. 

 

D. Decrease of the energy with time 

 

Lemma 5 - On the x  axis, the energy is decreasing: for all ,n   

 

( ) ( )0, 0, 1 .f n f n +  

 

Proof of Lemma 5 

 

We have ( )0,0 1f =  and ( )1,0 1f  ; let us admit the decrease until step n  and prove it at 

step 1n+ . We have ( ) ( ) ( ) ( )( )
1

,0 1,0 ,0 ,1 0
2

f n f n f n f n− + = −   by Lemma 1. This 

proves Lemma 5. 

 

However, it is not true that the energy is decreasing on all horizontal lines y j= ; indeed, 

if 1,j   it first increases and then decreases: see Part I. 

 

E. Matrix representation 

 

The system (1) may be viewed as the action of a linear operator on the vector 

( ) ( )( ),0 ,..., ,f n f n  ; the matrix, of dimension ( ) ( )1 1 , +  +  is: 
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1 1
0 ... ... ... 0

2 2

1 1 1
0 ... ... 0

4 2 4

1 1 1
0 0 ...

4 2 4

0

1 1 1
0 ... ... 0

4 2 4

1 1
0 ... ... ... 0

4 4

FM

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

 

 

and the energy vector at time 2n  is: 

 

( )

( )
2

0,0

0,

n

n F

f

E M

f 

 
 

=  
 
 

 

 

This matrix representation is not quite useful for further investigation, because it turns 

out that the matrix FM  has a non-zero kernel; indeed, the vector: 

 

( )1, 1,1, 1,...Z = − −  

 

satisfies 0.FM Z =  So we will find another representation, for which the matrix will be 

invertible, and for which the eigenvalues can be explicitly computed. See the book [BB_Op] 

for all topics related to operator theory, used here. 

 

F. A proper matrix representation 

 

We start with a new change in coordinates. 

 

1. A second change in coordinates 

 

We introduced in Part I, for any n  and k : 

 

( ) ( ) ( )( )
1

, , 1 ,
2

x n k f n k f n k= − +  

 

For 0,n =  using the symmetry: 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )
1 1

,0 , 1 ,0 ,0 ,1 ,1
2 2

x n f n f n f n f n x n= − + = + =  
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We have ( ), 0x n k =  if 1.k n +  From now on, we will work mostly with the new coordi-

nates. 

 

2. The propagation problem in the new coordinates 

 

- Case 2 =   

 

Equations (IV.B.1) above become: 

 

( ) ( )

( ) ( ) ( )

( ) ( )

1,0 ,1

1 1
1,1 ,1 ,2

2 2

1
1,2 ,2

2

f n x n

f n x n x n

f n x n


+ =




+ = +



+ =

                          (1) 

 

From (1), we deduce: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1 3 1

1,1 1,0 1,1 ,1 ,1 ,2 ,1 ,2
2 2 2 4 4

x n f n f n x n x n x n x n x n
 

+ = + + + = + + = + 
 

  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1 1 1
1,2 1,1 1,2 ,1 ,2 ,2

2 2 2 2 2 2 2

1 1
,1 ,2

4 2

x n f n f n x n x n x n

x n x n

   
+ = + + + = + +   

   

= +

  

 

So, we have the system: 

 

( ) ( ) ( )

( ) ( ) ( )

3 1
1,1 ,1 ,2

4 4

1 1
1,2 ,1 ,2

4 2

x n x n x n

x n x n x n


+ = +


 + = +


                       (2) 

 

with the initial values: 

 

( ) ( ) ( )( )
1 1

0,1 0,0 0,1
2 2

x f f= + = , ( ) ( ) ( )( )
1

0,2 0,1 0,2 0
2

x f f= + =   

 

These initial values may be written as a vector 
0

1
,0

2
X

 
=  
 

. 

 

The system of equations (2) may be written as a matrix, under the form: 
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( )

( )

( )

( )

3 1
1,1 ,14 4

1 11,2 ,2

4 2

x n x n

x n x n

 
 +   

=        +      
 

                                  (3) 

 

- General case:  2    

 

Equations (IV.B.1) above become: 

 

( ) ( )

( ) ( ) ( )( )

( ) ( )

1,0 ,1

1
1, , , 1 , 1,..., 1

2

1
1, ,

2

f n x n

f n k x n k x n k k

f n x n



 


+ =




+ = + + = −



+ =

                          (1) 

 

From (1), we deduce: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1 3 1

1,1 1,0 1,1 ,1 ,1 ,2 ,1 ,2
2 2 2 4 4

x n f n f n x n x n x n x n x n
 

+ = + + + = + + = + 
 

  

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

1 1 1
1, , 1 , , , 1

2 2 2

1 1 1
, 1 , , 1

4 2 4

x n k x n k x n k x n k x n k

x n k x n k x n k

 
+ = − + + + + 

 

= − + + +

  

 

for 2,..., 1k = − , and: 

 

( ) ( ) ( )
1 1

1, , 1 ,
4 2

x n x n x n  + = − +   

 

So, we have the system: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3 1
1,1 ,1 ,2

4 4

1 1 1
1, , 1 , , 1 ,for 2,..., 1

4 2 4

1 1
1, , 1 ,

4 2

x n x n x n

x n k x n k x n k x n k k

x n x n x n



  


+ = +




+ = − + + + = −



+ = − +

                       (2) 

 

with the initial values: 

 

( ) ( ) ( )( )
1 1

0,1 0,0 0,1
2 2

x f f= + = , ( ) ( ) ( )( )
1

0, 0, 1 0, 0,
2

x k f k f k= − + =  for 2k  . 
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These initial values may be written as a vector 
0

1
,0,...,0

2
X

 
=  
 

. 

 

The system of equations (2) may be written as a matrix, under the form: 

 

( )

( )

( )

( )

( )

( )

( )

3 1
0 ... ... ... 0

4 4

1 1 11,1 ,10 ... ... 0
4 2 41,2 ,2

1 1 1
... ...0 0 ...

4 2 4
... ...

... ...
0

1, 1 , 1
1 1 1

0 ... ... 01,
4 2 4

1 1
0 ... ... ... 0

4 2

x n x n

x n x n

x n x n

x n x

 



 
 
 

+   
   

+   
   
   

=   
   
   

+ − −   
   +   

 
 
 

( ),n 

 
 
 
 
 
 
 
 
 
 
 

                                  (3) 

 

We have a real symmetric matrix, of size  , which is denoted by .M  

 

We observe that, in this matrix representation, things are opposite to the physical repre-

sentation: the first element of the vector X  and the first row of the matrix correspond to 

what happens on the Ox  axis; the last element of X  and the last row of the matrix corre-

spond to what happens close to the barrier. 

 

We may also consider this situation as a propagation problem, with the following proper-

ties: 

 

A point may move upwards, horizontally or downwards; all horizontal arrows have prob-

ability 
1

,
2

 except the first one (the one on the x  axis) which has probability 
3

4
; all oblique 

arrows (up or down) have probability 
1

4
. In this representation, two paths with same 

origin and same destination do not need to have the same probability. In the picture below, 

the left path has probability 
2

1

4
and the right path probability 

2
3

4

 
 
 

. 

 

        
 

Therefore, on the ( ),x n k  coordinates, a matrix-oriented approach is appropriate, but an 

approach counting the number of paths is not. 
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We immediately deduce from the system (2) above that, if a vector X  is made of positive, 

decreasing, coordinates (that is 
1 2x x x   ), the same will hold for its image .Y MX=

In particular, the largest component of Y is the first. The first component of Y  is smaller 

than the first component of ,X  since: 

 

1 1 1 2 1 1 2

3 1 1 1
0.

4 4 4 4
y x x x x x x− = + − = − +   

 

More generally, let us define a "bottom segment" (in the matrix notation) as a segment of 

the form  1,k  for some , 1 ,k k    and, conversely, a "top segment" as a segment of the 

form  ,k  . A bottom segment includes the special cases of the x  axis only and the whole 

strip  1, .  Then, if a vector is made of positive, decreasing, coordinates, any bottom seg-

ment will see its energy decrease from one step to the next. Indeed, the energy it sends 

(one quarter of the top value of the segment) is smaller than the energy it receives (one 

quarter of the value of the point above the segment).  

 

We observe that this is not true for a top segment, which may very well see its energy 

increase from one step to the next. Indeed, a top segment loses its energy in two ways: it 

sends some energy to the bottom, and some is absorbed by the barrier. But the latter may 

be 0, or be very small, and the bottom segment may receive more energy than it loses. 

 

3. Properties of the matrix M 

 

The matrix M  enjoys many satisfactory properties, which the previous matrix FM  did 

not have. 

 

Lemma 6. - The matrix M  is positive defined. 

 

Proof of Lemma 6 

 

We have to show that, for all non-zero column-vector X  of size  , we have 0tX MX  . 

 

Let 

1x

X

x

 
 

=  
 
 

; we have: 
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1 2

1 2 3

1 1

2 1

1

3 1

4 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1

4 2

i i i

x x

x x x

MX x x x

x x x

x x

  

 

− +

− −

−

 
+ 

 
 + +
 
 
 
 

= + + 
 
 
 

+ + 
 
 

+ 
 

  

 

and therefore: 

 

1 2 1 1 2 3 2 1 1

2 1 1 1

2 2

1

3 1 1 1 1 1 1 1
... ...

4 4 4 2 4 4 2 4

1 1 1 1 1

4 2 4 4 2

1 1

2 4

t

i i i iX MX x x x x x x x x x x x

x x x x x x x

x b x

      



− +

− − − −

     
= + + + + + + + + + +     
     

   
+ + + + +   
   

= + +

  

 

with ( ) ( ) ( ) ( )( )22 2 2

1 2 2 3 1 1

1
... ... .

4
i ib x x x x x x x x − −= + + + + + + + + +   

 

So, clearly 0tX MX   if the ix 's are not all equal to 0. This proves Lemma 6. 

 

From Lemma 6 follows that all eigenvalues of M  are real and 0 and that M  can be 

diagonalized in an orthogonal basis made of eigenvectors. 

 

Lemma 7. - All eigenvalues of M  are 1.  

  

Proof of Lemma 7 

 

Let us write the system of equations defining the eigenvalues and eigenvectors, .MX X=  
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1 2 1

1 2 3 2

1 1

2 1 1

1

3 1

4 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1 1

4 2 4

1 1

4 2

i i i i

x x x

x x x x

x x x x

x x x x

x x x

   

  











− +

− − −

−


+ =


 + + =





+ + =



 + + =



+ =


                                                        (1) 

 

It may be written: 

 

( )

( )

( )

( )

( )

2 1

3 2 1

1 1

1 2

1

4 3

4 2

4 2

4 2

4 2

i i i

x x

x x x

x x x

x x x

x x

  

 











+ −

− −

−

 = −


= − −




= − −


 = − −


= −

                                                                 (2) 

 

We know that 1 0x   (if 1 0,x =  all 0ix = ), so we may assume 1 1.x =  Assume 1  . From 

the first equation ( )2 14 3x x= −  we deduce 2 1 0x x  .  

 

More generally, the equation ( )1 14 2i i ix x x+ −= − − gives: 

  

( )1 1 14 3i i i i i ix x x x x x− + +− = − −  −  

 

that is 1 1 .i i i ix x x x− +−  − So the sequence of consecutive differences is increasing. Since 

2 1x x , all differences are positive, the ix  are increasing and are 0.  Set 
1

i

i

S x


=

= ; sum-

ming all equations, we get 
1

4
S x S − = , that is ( )

1
1 .

4
x S − = −  But this is a contradic-

tion: 1  , 0S   and 0.x   Lemma 7 is proved. 

 

The results we obtain here for the matrix M  do not hold for the previous matrix FM ; this 

is why we had to make this change of variables. 
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4. Precise results on the eigenvalues and eigenvectors 

 

Proposition 8. - For 1,..., ,j =  let 
2 1

.
2 1

j

j
 



−
=

+
 The 

thj  eigenvalue 
j  is: 

 

( ) 2
1 cos

cos
2 2

j j

j

 


+
= =  

 

and the 
thj  eigenvector has components: 

 

( ) ( )( ) ( )( )sin ,sin 1 ,...,sin .j j j jV    = −  

 

Proof of Proposition 8 

 

We have 0x   (otherwise all jx s  are 0), so we may assume 1x = .  

 

We set 2 1 = − , then 1  . System (2) above becomes: 

 

( )2 1

3 2 1

1 1

1 2

1

2 1

2

2

2

2

i i i

x x

x x x

x x x

x x x

x x

  

 











+ −

− −

−

 = −


= −



= −



= −


=

                                                                           (1) 

 

We set 
j jy x−=  for 0,..., 1.j = −  System (1) becomes: 

 

( )

0

1

2 1 0

1 2

1 2 3

2 1

1

2

2

2

2

2 1

j j j

y

y

y y y

y y y

y y y

y y

  

 











− −

− − −

− −

=


=

 = −


 = −




= −
 = −

                                                                         (2) 

 

Therefore, ( )j jy U =  where 
jU  is the 

thj  Chebychev's polynomial of second kind, for 

0,..., 1.j = −  The final equation in (2) may be written: 
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( ) ( ) ( )2 12 1U U   − −= −                                         (3) 

 

that is, with ( )cos = : 

 

( )( )
( )

( )( )
( )
( )

sin 1 sin
2cos 1

sin sin

  


 

−
= − . 

 

By Lemma 7, ( )sin 0,   so the above equation is equivalent to: 

 

( )( ) ( )( ) ( )sin 1 2cos 1 sin   − = −                                  (4) 

 

We have: 

 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )sin 1 2cos 1 sin sin cos cos sin sin .        − − − = − − +  

 

Therefore, equation (4) is equivalent to: 

 

( ) ( )( ) ( ) ( )sin 1 cos cos sin   − =  

 

or: 

 

( )
( )
( )

sin
tan

1 cos





=

−
                                                 (5) 

 

which may be written: 

 

( )
1

tan

tan
2




=                                                    (6) 

Therefore: 

 

( ) ( )cos cos sin sin 0
2 2

 
 − =  

 

which gives: 

 

cos 0,
2



 

+ = 
 

 

 

and this equation has the solutions ( )
2 1

1
2 2

j
 

 
+

= + − , 1,..., ,j =   
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that is: 

 

 
( )2 1

2 1

j 




−
=

+
                                                        (7) 

 

as we announced. 

 

Since ( )
( )( )sin 1

cos
sin

j

j
U






+
= , after multiplication, we may take, for 1,...,j = : 

 

( ) ( )( ) ( )( )sin ,sin 1 ,...,sinj j j jV    = −                                (8) 

 

and 
( ) 2

1 cos
cos

2 2

j j

j

 


+
= = . This finishes the proof of Proposition 8. 

 

Another formulation for the components of the eigenvectors is: 

 

Proposition 8b. – The components of the 
thj  eigenvector, ,jV  may be written: 

 

( )
( ) ( )1 2 1 2 1

1 cos ,...,cos ,...,cos
2 2 2

j j j j

j

k
V

   −  − −    
= −       

      

 

 

Proof of Proposition 8b 

 

Indeed, we observe that: 

 

( )
2 1 2 1

2 1
2 2 1 2 2 2 1 2

j

j j
j j

   
 

 

− −
= − − = − −

+ +
 

 

and therefore: 

 

( ) ( ) ( )
1 12 1 2 1

sin sin 1 cos 1 cos
2 2 1 2 2 1 2 2

j j j

j

j j
j

  
 

 

− −   − −
= − − = − = −   

+ +   
 

 

More generally: 

 

( )( )
( ) ( )

( )
( ) ( )

( )
( )1 1

2 1 2 1
sin 1 sin

2 2 1 2

2 12 1 2 1
1 cos 1 cos

2 1 2 2

j

j j j

k j
k j

kk j

 
  







− −

− − 
− + = − − 

+ 

−− − 
= − = − 

+ 

 

 

This proves Proposition 8b. 



BB SRW Part 2, 2019/08 17 

The first eigenvector, 1V , has all its components real and 0 , but all other eigenvectors 

have some negative component. 

 

 
 

Fig. : the components of 1V , 2V , 3V , for 50 =  

 

Remark. - It follows from the general theory of symmetric matrices, positive defined, that 

any two eigenvectors 
1 2
,j jV V  are mutually orthogonal, that is: 

 

( ) ( )
1 2

1

sin sin 0j j

l

l l


 
=

=  

 

where 
( ) ( )

1 2

1 22 1 2 1
,

2 1 2 1
j j

j j 
 

 

− −
= =

+ +
. This can be checked directly. 

 

We now compute the 2l −  norm of the eigenvectors. 

 

5. Norms of the eigenvectors 

 

Proposition 9. – All eigenvectors have the same quadratic norm: 

 

2

2

1
,

2 4
jV


= +  

 

for 1,..., .j =   

 

Proof of Proposition 9 

 

Let us compute 
2

2
.jV  We use the identity: 

 

( )
( )( )

( )
2

1

sin 2 11 1
sin

2 4 4 sink

t
kt

t

 

=

+
= + −   
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which gives, with 
( )2 1

2 1

j
t





−
=

+
: 

 

( ) ( )( )
( )

2
2

2
1

sin 2 12 1 1 1 1
sin

2 12 1 2 4 4 2 4
sin

2 1

j

k

jk j
V

j

   





=

−− 
= = + − = + 

−+   
 

+ 

 , as we announced. 

 

For any vector ( )1,..., ,V v v=  we denote by ( )
1

j

j

s V v


=

=  the sum of its components. It can 

be considered as the "energy" carried by the vector, but one should remember that some 

components may be negative.  

 

Indeed, for any vector ,X  we have a Hilbert space decomposition : 

 

1

j j

j

X V



=

=   

 

Since the eigenvectors are orthogonal, the coefficients 
j  may be computed simply: 

 

2

2

, j

j

j

X V

V


 
=  

 

Assume X  is a vector with positive coefficients ; then ( )s X  is the energy carried by this 

vector. But, from the above decomposition, we get: 

( ) ( )
1

j j

j

s X s V



=

=  

 

and ( )js V  may be regarded as the energy carried by the vector 
jV , though this vector does 

not have all its coefficients positive. 

 

Proposition 10. – All eigenvectors satisfy: 

 

( ) ( )
1 1 1

tan
2 2

tan
2

j j

j

s V 


= =
 
 
 

 

 

Proof of Proposition 10 
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The eigenvector 
jV  carries the energy ( ).js V  Apply the matrix M  to this eigenvector. The 

loss of energy is ( )
1

sin
4

j , since the last coordinate of the eigenvector is ( )sin j . But, by  

definition, we have 
j j jMV V=  and the loss of energy is ( ) ( )1 j js V− . So, we get: 

 

( )
( ) ( )

( )
2 2 2

sin cos
sin sin 2 21 1 1 1 1 1

tan
4 4 2 2 2

1 cos sin sin tan
2 2 2 2

j j

j j

j j

j j j j

s V

 

 


   

   
   
   = = = = =

       
−        

       

  

 

which proves our claim. 

 

Let us give an example, for 10 = : 

 
 

Only the first vector has all its coefficients positive and distinct. For the others, some com-

ponents may be repeated, for instance ( ) ( )4 42 3 .W W=  We also observe that the energy is 

decreasing from 1V  to V  : this is clear, since 0
2 2

j 
   and 

j  increases. 

 

We observe that the 1l  norms differ from one vector to the other. Here are these norms in 

the previous case: 

 

 
 

6. Decomposition on the basis of eigenvectors 

 

Proposition 11. – Let 
2 1

2 1
j

j
 



−
=

+
, 1,..., .j =  At the initial step, the proportion of energy 

carried by the 
thj  eigenvector is given by the formula: 

 

W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 10

theta (rd) 0,150 0,449 0,748 1,047 1,346 1,646 1,945 2,244 2,543 2,842

components 0,149 0,434 0,680 0,866 0,975 0,997 0,931 0,782 0,563 0,295

0,295 0,782 0,997 0,866 0,434 -0,149 -0,680 -0,975 -0,931 -0,563

0,434 0,975 0,782 0,000 -0,782 -0,975 -0,434 0,434 0,975 0,782

0,563 0,975 0,149 -0,866 -0,782 0,295 0,997 0,434 -0,680 -0,931

0,680 0,782 -0,563 -0,866 0,434 0,931 -0,295 -0,975 0,149 0,997

0,782 0,434 -0,975 0,000 0,975 -0,434 -0,782 0,782 0,434 -0,975

0,866 0,000 -0,866 0,866 0,000 -0,866 0,866 0,000 -0,866 0,866

0,931 -0,434 -0,295 0,866 -0,975 0,563 0,149 -0,782 0,997 -0,680

0,975 -0,782 0,434 0,000 -0,434 0,782 -0,975 0,975 -0,782 0,434

0,997 -0,975 0,931 -0,866 0,782 -0,680 0,563 -0,434 0,295 -0,149

s(V) 6,672 2,191 1,274 0,866 0,627 0,464 0,341 0,241 0,154 0,075

norme 1 6,672 6,572 6,672 6,062 6,572 6,672 6,672 6,572 6,672 6,672
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( ) ( )

2

1

0

cos
21

1
2 1

sin
2

j

j

j

j

s X





−

 
 
 = −

+  
 
 

 

 

More generally, at the 
thn  step, the proportion of energy carried by the 

thj  eigenvector is 

given by the formula: 

 

( )
( )

2 2
1

0

cos
1 2

2 1
sin

2

jn
j

n

j

j

s M X





+
−

 
 −  =

+  
 
 

 

 

At the 
thn  step, the energy at each point can be written: 

 

( )
( ) 2 1

1

2 12
, cos cos

2 1 2 2

j jn

j

k
x n k

  



+

=

− 
=  

+  
  

 

The total energy on the 
thn  vertical is: 

 

( ) ( ) ( )

2 2

1

01
1 1

cos
1 21 .

2 1
sin

2

jn

jn

n n j
jj j

X s X s M X
 





+

−

= =

= = = −
+

   

The quadratic energy on the 
thn  vertical is: 

 

2 4 2

2
1

1 2 1
cos

2 1 2 1 2

n

n

j

j
X

 

 

+

=

 −
=  

+ + 
  

 

 

Proof of Proposition 11 

 

We start with the initial value ( )0,0 1,f = ( )0, 0f k = , 1,..., .k =  So, the initial vector is 

0

1
,0,...,0

2
X

 
=  
 

. We decompose this vector on the basis of eigenvectors. We write: 

 

0

1

j j

j

X V



=

=  

 

and we obtain: 
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( ) ( )
1

0

2

2

1 cos
sin, 2

1 1

2 2

j j

jj

j

j

X V

V






 

−  
−     = = =

+ +

 

 

using Proposition 8b. We see that the coefficients 
j  have alternate signs and are decreas-

ing in absolute value, for 1,..., .j =   

 

The energy can be written: 

 

( ) ( )0

1

j j

j

s X s V



=

=  

 

that is, using Proposition 10: 

 

( ) ( ) ( ) ( )

2

1

0

1 1

cos
21 1

sin tan 1
2 1 2 1

sin
2

j

j

j j

jj j

s X
 



 
 

−

= =

 
 
 = = −

+ +  
 
 

   

 

This proves our first claim. 

 

We see that the proportion of energy carried by the 
thj  eigenvector has alternate sign and 

is decreasing in absolute value. 

 

At the 
thn  step (time 2n ), the vector nX  is: 

 

0

1 1 1

n n n n

n j j j j j j j

j j j

X M X M V M V V
  

   
= = =

= = = =                             (6) 

 

This gives: 

 

( ) ( ) ( )

2 2

1

1 1

cos
21

1
2 1

sin
2

jn

jn

n j j j

jj j

s X s V
 



 


+

−

= =

 
 
 = = −

+  
 
 

   

 

which proves our second claim. 

 

Let ( ), jE n V  be the energy carried by the eigenvector 
jV  at step .n  The previous result 

gives: 
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( )
( )

2 1
1 cos

1 2
,

2 1
sin

2

jn
j

j

j

E n V





+
−

 
 −  =

+  
 
 

 

 

If we want to find the energy at each place ( ), ,x n k  we simply have to identify the coordi-

nates in (6). Recall that the 
thk  component of 

jV  ( 1,...,k = ) is: 

 ( )( ) ( )
( )1 2 1

sin 1 1 cos
2

j j

j

k
k


 

− −
− + = −   

 

So we get: 

 

( ) ( )
( )

( )
( )

( )

1

12

1 1

2 1

1

1 cos 2 12, cos 1 cos
1 2 2

2

2 11
cos cos

1 2 2

2

j j

jj jn n

j j j

j j

j jn

j

k
x n k V k

k

 




 

 



 



−

−

= =

+

=

− − 
= = − 

 +

− 
=  

 +

 



 

 

which proves our third claim. The fourth claim is an obvious consequence of the second, 

summing upon .j  The fifth claim follows from the formula: 

 

( )
2 2 4

2
1

1
sin cos

2 1 2

jn

n j

j

X
 


 =

=
+
 . 

 

We observe that ( ),x n k  may be written as a scalar product: 

 

( )
1

, ,
1

2

k nx n k A B



=

+

, with 

( )

( )

1 2 1 1

2 1

cos 2 1 cos
2 2

,

coscos 2 1
22

n

k n

n

k

A B

k


 



+

+

    −        
 = =  
   

    −      

 . 

 

In the case 3, =  we find numerically: 

 

( ) .2716 0.9505 0.1746 0.6113 0.0, 51 38 0.18830 n n nx n  + =  +   

( ) .2178 0.9505 0.0969 0.6113 0.1, 22 09 0.18830 n n nx n  − =  −   

( ) .1209 0.9505 0.2178 0.6113 0.0, 93 69 0.18830 n n nx n  − =  +   

 

We can now state the main theorem of this section: 
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Theorem 12. - At each step 2 ,n  the energy ( ) ( )2 ,2 ,e n k f n k= , 0,...,k = , is given by: 

 

 

( ) ( )

( ) ( ) ( )( )

( ) ( )

,0 1,1

1
, 1, 1, 1 , 1,..., 1

2

1
, 1,

2

f n x n

f n k x n k x n k k

f n x n



 


= −




= − + − + = −



= −

  

 

where, for 1,...,k = : 

 

( )
( ) 2 1

1

2 12
, cos cos

2 1 2 2

j jn

j

k
x n k

  



+

=

− 
=  

+  
  

 

and 
( )2 1

, 1,..., .
2 1

j

j
j


 



−
= =

+
 

 

Proof of Theorem 12 

 

It follows immediately from Proposition 11 and the equations relating ( ),f n k  with 

( ) ( )1, , 1, 1x n k x n k− − + , namely: 

( ) ( )

( ) ( ) ( )( )

( ) ( )

,0 1,1

1
, 1, 1, 1 , 1,..., 1

2

1
, 1,

2

f n x n

f n k x n k x n k k

f n x n



 


= −




= − + − + = −



= −

 

 

This concludes the proof of Theorem 12.  

 

7. Combinatorial expressions 

 

So far, the results have been given in trigonometric terms. We now show that they may be 

expressed in terms of combinatorics. 

 

In what follows, 
n

k

 
 
 

 is zero if k n  or if 0k  : this will simplify the notation. 

 

Proposition 13. - At each step, we have: 

 

( ) ( )
( )2 1 2 1

1

2 12 11 1
, 1

2 112 2

u

n n
u

nn
x n k

k n un k + +


+ + 
= −   

+ − +− +  
+


  
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Proof of Proposition 13 

 

We use the identity: 

 

( ) ( )( )2 1

2
0

2 11
cos cos 2 1 2

2

n
n

n
l

n
x n l x

l

+

=

+ 
= + − 

 
  

 

which gives: 

 

( )
( )

( )
2

0 1

2 1 2 12 1
, cos cos 2 1 2

2 1 2 2 2

n
j j

n
l j

n k
x n k n l

l

  

 = =

+ −    
= + −    

+     
   

 

that is: 

 

( ) ( )( ) ( )( )( )2
0 1

2 11 1
, cos 1 cos

2 1 2

n

j jn
l j

n
x n k k n l k n l

l



 
 = =

+ 
= − − + + + − 

+  
    

 

Let: 

 

( )( )1 2
0 1

2 11 1
cos 1

2 1 2

n

jn
l j

n
T k n l

l




 = =

+ 
= − − + 

+  
    

 

For all ,k  we have the following identities: 

 

( ) ( )
1

1

1
cos 1

2

k

j

j

k



−

=

= −  if k  is not a multiple of 2 1 +   

( )
1

cos j

j

k


 
=

=  if k  is an even multiple of 2 1 + (including 0) 

( )
1

cos j

j

k


 
=

= −  if k  is an odd multiple of 2 1 + . 

 

So, we must study the term 1k n l− − + , 1 ,k     0 l n  . 

 

We have 1 0k n l− − + =  if and only if 1l n k= − + ; we cannot have 1 2 1k n l − − + = + , 

since this is equivalent to 2 2l n k = − + + , but 2 0k −   and .l n   

 

Therefore: 
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( ) ( )( )

( )( ) ( )( )

( ) ( )

2

1

0 1

0 1 1
1

0
1

2 1
2 1 2 cos 1

2 1 2 1
cos 1 cos 1 1

1

2 1 2 11
1 1

12

n
n

j

l j

n

j j

l j j
l n k

n
k n l

l
l n k

n
T k n l

l

n n
k n l k n n k

l n k

n n

l n k



 

 

 



= =

= = =
 − +

−

=
 − +

+ 
+ = − − + 

 

+ +   
= − − + + − − + − +   

− +   

+ +   
= − − +   

− +   

 

  



 

 

But: 

 

( ) ( ) ( )
1

0 0
1

2 1 2 1 2 1
1 1 1

1

n n
l l n k

l l
l n k

n n n

l l n k

− +

= =
 − +

+ + +     
− = − − −     

− +     
    

 

We have the identity: 

 

( ) ( )
0

2
1 1

1 2n
n

l

l

n

l

n

n=

+ 
− =

 
−  

 

 

   

 

and thus: 

 

( ) ( ) ( )
0

1

22 1 2 1
11 1

1

n
l n k

l
l

n

n k

nn n

l n n k

−

=
 − +

+ +   
− = −   

−

 
− + 

  +   
  

 

Therefore: 

 

( ) ( )1 2 1

2 11 1
1

12 1

2
2 1

2

k

n

n

n

n
T

n k


 +

  
+

+ 
= −  

− ++ 
+  

  
  

 

which gives: 

 

( )1 2 1 2 1

2 11 1 1

12 1 2 2

2
1

n

k

n

n

n

n
T

n k + +

 
− + 

 

+ 
=  

− ++  
  

 

The same way, let: 

 

( )( )2 2
0 1

2 11 1
cos

2 1 2

n

jn
l j

n
T k n l

l




 = =

+ 
= + − 

+  
    
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Since l n  and 1,k   the coefficient k n l+ −  cannot vanish. But we have 2 1k n l + − = +  

for ( )2 1l k n = + − +  and more generally ( )2 1k n l u + − = +  for ( )2 1l k n u = + − + . We 

need 0,l   ( )2 1 ,k n u +  +
2 1

k n
u



+


+
, that is 1,..., int

2 1

k n
u a



 +
= =  

+ 
. 

 

So: 

 

( )( ) ( )
1

1

1
cos 1

2

k n l

j

j

k n l



+ − −

=

+ − = −  if ( )2 1l k n u  + − +  

( )( )
1

cos j

j

k n l


 
=

+ − = −  if ( )2 1l k n u = + − + , u  odd 

( )( )
1

cos j

j

k n l


 
=

+ − =  if ( )2 1l k n u = + − + , u  even 

 

This gives: 

 

( ) ( )

( )

( ) ( )
( )

12

2

0 1
2 1

2 12 11
2 1 2 1 1 1

2 12

n a
k n l un

l u
l k n u

nn
T

k n ul


 


+ −

= =
 + − +

++   
+ = − − + −   

+ − +   
   

 

( ) ( ) ( ) ( ) ( )
( )

( )

( )
( )

1 1 2 12

2

0 1

1

2 12 11 1
2 1 2 1 1 1 1

2 12 2

2 1
1

2 1

n a
k n l k n k n un

l u

a
u

u

nn
T

k n ul

n

k n u









+ − + − + − +

= =

=

++   
+ = − − − − −   

+ − +   

+ 
+ −  

+ − + 

 



 

 

( ) ( ) ( ) ( )
( )

( )
( )

12

2

0 1 1

2 1 2 12 11 1
2 1 2 1 1 1 1

2 1 2 12 2

n a a
k n l u un

l u u

n nn
T

k n u k n ul
 

 

+ −

= = =

+ ++     
+ = − − + − + −    

+ − + + − +     
    

 

( ) ( ) ( )
( )

( )
( )

12 1

2

1 1

2 1 2 1
2 1 2 1 1 2 1

2 1 2 1

2 a a
k u un

u u

n n
T

k n u

n

n k n u
 

 

−+

= =

+ +   
+ = − + − + −   

+ − + + − +

 

  

 




   

 

and finally: 

 

( )
( )

( )
( )2 2 1 2 1

1

1 2 11
1

2 12 1 2 2

21
1

a
u

n n

k

u

n

n

n
T

k n u  + +

−

=

+ 
= −  

+ −

 
− + 

  ++  
   

 

So, we obtain: 

 

( ) ( )
( )1 2 2 1 2 1

1

2 12 11 1
, 1

2 112 2

a
u

n n
u

nn
x n k T T

k n un k + +
=

++   
= + = −   

+ − +− +  
+


  
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which proves Proposition 13. 

 

The trigonometric expression in Proposition 11 may look less expressive than its combina-

torial counterpart, but it is simpler to establish. In our view, the trigonometric presenta-

tion is more natural for the present subject. 

 

Proposition 14. – For each ,n  the quadratic energy satisfies: 

 

( )
( )

2

1

2

4 3 4 22

4 24 21 1
1

2 1 2 12 12 2

u
u

n n n
u u

nn
X

n un + +
=

++   
= + −   

+ − ++   
  

 

 with 
1

1
1 int ,

2 1
u



 
= +  

+ 
2

2 1
int .

2 1

n
u



 +
=  

+ 
 

 

Proof of Proposition 14 

 

We write: 

 

( )( )
2

4 2

4 2 4 1
0

4 2 4 21 1
cos cos 2 1

2 12 2 2

n
n

n n
l

n n
n l

n l


+

+ +
=

+ +    
= + + −     

+     
  

 

( )( )
2

2

4 2 4 12
0 1

4 2 4 21 1 1
cos 2 1

2 12 2 1 2 2 1

n

n jn n
l j

n n
X n l

n l




 + +
= =

+ +   
= + + −   

++ +   
   

 

We will make use of the following formulas: 

 

( ) ( )
1

1

1
cos 1

2

k

j

j

k



−

=

= −  if k  is not a multiple of 2 1 + ; 

( ) ( )
1

cos 1
u

j

j

k


 
=

= −  if ( )2 1k u = +  is a multiple of 2 1 + (including 0), 

 

that is: 

 

( )( ) ( )
1

1
cos 2 1 1

2

l

j

j

n l



=

+ − = −  if 2 1n l+ −  is not a multiple of 2 1 + ; 

( )( ) ( )
1

cos 2 1 1
u

j

j

n l


 
=

+ − = −  if ( )2 1 2 1n l u + − = + . 

 

The condition ( )2 1 2 1n l u + − = +  is equivalent to ( )2 1 2 1l n u = + − + . Since 

( )0 2 1 2 1 2n u n + − +  , we have 1 2

1 2 1
1 int int .

2 1 2 1

n
u u u

 

   +
= +   =   

+ +   
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We have: 

 

( )( )
( )

( ) ( )
( )

2

1

2 2

0 1 0
2 1 2 1

4 24 2 4 21
cos 2 1 1 1

2 1 2 12

un n
l u

j

l j l u u
l n u

nn n
n l

n ul l





 
= = = =

 + − +

++ +     
+ − = − + −     

+ − +     
      

 

and: 

 

( )

( ) ( ) ( )
( )

2

1

2 2

0 0
2 1 2 1

4 24 2 4 2
1 1 1

2 1 2 1

un n
l l u

l l u u
l n u

nn n

n ul l


= = =
 + − +

++ +     
− = − + −     

+ − +     
     

 

But: 

 

( )
2

0

4 2
1

4 21

2 12

n
l

l

n

l

n

n=

+ 
− = 

 

+ 
 

+ 
   

 

which gives: 

 

( )

( ) ( )
( )

2

1

2

0
2 1 2 1

4 24 2
1 1

4 21

2 12 1 12 2

un
l u

l u u
l n u

n

n

nn

n ul


= =
 + − +

++   
− = + −   

+ − + 

+ 
 

+   
   

 

( )( ) ( )
( )

2

1

2

0 1

4 24 2 1 1
cos 2 1

4 2

2 1
1

2 1 2 14 2

un
u

j

l j u u

n nn
n l

n ul n



 
= = =

+ 
 

+

++     
+ − = + + −    

+ − +    
    

 

( )
( )

2

1

2

4 2 4 3 4 22

4 2

2

4 24 21 1 1 1
1

2 1 2 12 12 2 1 2 2 1 21

u
u

n n n n
u u

nn
X

nn n u

n

 + + +
=

+  ++   
= + + −   

+ − +++ + 


+ 


 
  

 

and finally: 

 

( )
( )

2

1

2

4 3 4 22

4 24 21 1
1

2 1 2 12 12 2

u
u

n n n
u u

nn
X

n un + +
=

++   
= + −   

+ − ++   
  

 

which proves Proposition 14. 

 

8. Consequences 

 

We deduce the probability that, at step 2n , both players have equal fortune; this is the 

value of ( )2 ,0e n . 
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Corollary 15. - For each ,n  we have: 

 

( ) ( )
( )

2

2 1 2 1
1 1

2 12 12 1 1
2 ,0 cos 1

1 2 12 1 2 2 2

njn

n n
j u

nn
e n

n un

 

 − −
= 

+ − 
= = + −   

+ − ++    
   

 

Proof of Corollary 15 

 

We saw that ( ) ( ) ( )2 ,0 ,0 1,1e n f n x n= = − ; the result follows from Theorem 12 and Prop-

osition 13. 

 

 

The total energy (in x), for 7 =  and 1,...,30n =  

Recall that a sequence ka  is said to be concave if, for all ,k  ( )1 1

1

2
k k ka a a− + + . 

 

Proposition 16. – At each time, the energy profile is concave. 

 

Proof of Proposition 16 

 

Let us compute, for fixed n : 

 

( ) ( )
( ) ( ) 2 1

1

2 1 2 11
, , 1 cos cos cos

1 2 2 2

2

j j jn

k

j

k k
d x n k x n k

   



+

=

 − +   
= − + = −     

    +
  

 

Using the identity cos cos 2sin sin
2 2

p q p q
p q

+ −
− = − , we obtain: 

 

( ) ( ) 2 1

1

2
sin sin cos

1 2

2

jn

k j j

j

d k
 

 



+

=

=

+
  

 

and: 
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( ) ( )( )( ) ( ) 2 1

1

1

2
sin sin 1 sin cos

1 2

2

jn

k k j j j

j

d d k k
 

  



+

+

=

− = − +

+
  

 

Using the identity sin sin 2sin cos
2 2

p q p q
p q

− +
− = , we obtain: 

 

( ) ( ) 2 1

1

1

4
sin cos 2 1 sin cos 0

1 2 2 2

2

j j jn

k k j

j

d d k
   





+

+

=

 −
− = +  

 +
 . 

 

This shows that 1k kd d + , or ( ) ( ) ( ) ( ), , 1 , 1 , 2x n k x n k x n k x n k− +  + − + , that is: 

 

( ) ( ) ( ), , 2 2 , 1x n k x n k x n k+ +  +  

 

which proves our claim. 

 

 

 
 

The energy profile (in x ), for 7, 30n = =  (point style) and 50n =  (line style) 

 

As we already said, the angle 
2

j
 satisfies 

2 1
0

2 1 2 2

j  



−
 

+
 and is increasing as a function 

of .j  Therefore, sin
2

j
is positive and increasing, cos

2

j
 is positive and decreasing, and so 

is 
2 2cos

2

jn


+
. The series ( )

2 2

1

1

cos
21

sin
2

jn

j

jj







+

−

=

−  has alternate signs, and its general term is 

decreasing. So, we have the general estimates: 
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Corollary 17. – The energy at each step satisfies: 

 

2 2 2 2 2 2

1

1 3 1
cos cos cos

2 1 2 2 1 2 2 1 21 1

2 1 2 11 3 1
sin sin sin

2 1 2 2 1 2 2 1 2

n n n

nX

  

  

   

  

+ + +      
      + + +      −  
 + +     

      + + +      

 

 

We state the upper estimate in a form which will be helpful to us in Part IV. In the results 

presented above, we started with an energy equal to 1, put at the origin, in the standard 

coordinates; it became an energy equal to 
1

2
 in the x  coordinates. If we want to investigate 

the total loss, we should start with an energy equal to 1, at the origin, in the x  coordinates. 

So we get: 

 

Corollary 17b. - Assume that the barrier is set at 2 1 +  ; let 
2

1

1
cos

2 1 2






 
=  

+ 
 be the 

first eigenvalue of the matrix M  in this dimension. Assume we start with an energy equal 

to 1 at the origin. Then, at any step ,n  the total remaining energy satisfies the estimate: 

 

1

4 n

nE 


  

 

Proof of Corollary 17b 

 

If we start with an energy equal to 1, we have, by Corollary 17: 

 

2

1

1
cos

2 1 22

2 1 1
sin

2 1 2

n

nE






 



 
 

+ 
+  

 
+ 

 

 

The function ( )

2cos
2

sin
2

x

f x x

x





 
 
 =
 
 
 

 is decreasing on the interval 
1

0
3

x  , so the maximum 

value is obtained when 0,x →  that is ,n→+  and this limit is 
2


. This proves Corollary 17b. 

 

If we want to obtain estimates about the energy ( ),e n k  instead of ( ),x n k , we come back 

to system (2.1): 
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( ) ( )

( ) ( ) ( )( )

( ) ( )

1,0 ,1

1
1, , , 1 , 1,..., 1

2

1
1, ,

2

f n x n

f n k x n k x n k k

f n x n



 


+ =




+ = + + = −



+ =

 

 

which gives: 

 

( ) ( ) ( ) ( )
1 2 1

3 3
1, ,1 , ,

2 2j j j

f n j x n x n j x n j
  

= = =

+ = +      

 

and, the same way: 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1
22 2 2 2 2

1 1

1 1
2 2 2 2

1 1

2

2

1 1
1,0 1, , ,1 , , 1 ,

4 4

1 1 1
,1 , , 1 ,

2 2 4

3

2

j j

j j

n

f n f n j f n x n x n j x n j x n

x n x n j x n j x n

X

 

 

 



− −

= =

− −

= =

+ + + + = + + + +

 + + + +



 

   

 

Corollary 18. - Asymptotically when ,n→+  we have the estimate, with 1 :
2 1





=

+
 

 

2 2 1

1
1

cos
1 2

2 1 sin
2

n

nX





+

+
 

 

For the energy ( )2 , ,e n j  we have the estimates: 

 

( ) 2 2 12
2 2,0 cos

2 1 2

ne n




++
+

 

 

and, for 1,..., 1j = − : 

 

( ) ( )( ) 2 2 1
1

2
2 2,2 sin cos

2 1 2

ne n j j


 


++ = −
+

 

 

and for j = : 

 

( ) ( ) 2 1 1
1

2
2 2,2 sin cos

2 1 2

ne n


 


++
+
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and the total energy satisfies: 

 

( ) ( ) ( )
1

2 1 1 1 1
1 1

0 1

1
2 2, cos cos cos sin sin .

1 2 2 2

2

n

j j

e n j j
   

 



−
+

= =

 
+ + + 

 +
   

 

Proof of Corollary 18 

 

The first part follows immediately from Proposition 16.  

 

Returning to the energy ( ) ( ), 2 ,2f n j e n j= , we find: 

 

( ) ( )
( ) ( )2 2

21 1 1
1

sin sin
2 2,0 ,1 cos

1 1 2

2 2

n ne n x n
  



 

+ = =

+ +

 

But ( ) 1
1sin cos

2


 = , which gives the announced formula. For 1,..., 1j = − : 

 

( ) ( ) ( )( )
( ) ( )( ) ( )( )

( )
( )( ) ( )( )

1 11 1

2 21 1 1 1
1 1

sin 1 sinsin1
2 2,2 , , 1

12 2

2

sin 2
sin cos cos sin

1 2 2 1 2

2

n

n

n

j j
e n j x n j x n j

j j

    



   
   



+

− + + −
+ = + +

+

= − = −
++

  

 

and finally: 

 

( ) ( )
( ) ( )

( )2 11 1 1
1 1

sin sin1 2
2 2,2 , cos sin

12 2 1 2

2

n ne n x n
  

   


++ = =
++

 

 

which proves Corollary 18. We see that, asymptotically when ,n→+  the energy is car-

ried by the first eigenvector. 

 

9. Domination principle 

 

Proposition 19. – Assume that 0 0,X Y  are two initial distributions of energy, on the verti-

cal 0,x =  satisfying ( ) ( )0 0 ,X k Y k  for 1,..., .k =  Let ,n nX Y  be the corresponding ener-

gies, at time .n  Then, for all ,k  ( ) ( )n nX k Y k . 

 

What this proposition says is that, if an energy distribution dominates another one at the 

initial stage, it will dominate it at any further stage. 

 

Proof of Proposition 19 
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This is obvious: ( )0 0

n

n nX Y M X Y− = − ; the vector 0 0X Y− has all its components which 

are positive, and the matrix nM  has only positive entries. 

 

Corollary 20. - The energy at each step satisfies the estimates: 

 

( ) 1

1
,0

2

nx n    and ( )
( )( )
( )

11

1

sin
,

4 sin

n k
x n k

 



−
  for 1,..., .k =  

 

with 
2 1

1 cos .
2


 =  

 

Proof of Corollary 20 

 

Consider the first eigenvector   

 

( ) ( )( ) ( )( )1 1 1 1sin ,sin 1 ,...,sinV    = −  with 1
2 1





=

+
  

 

and let us normalize it differently. We consider: 

 

( )( )
( )

( )

( )
1 1

1

1 1

sin 1 sin1
, ,...,

2 2sin 2sin
W

  

 

 −
=  
 
 

  

 

All components are 0 , and it dominates the initial vector 
0

1
,0,...,0

2
X

 
=  
 

. By Proposi-

tion 19, the same will hold at each step. But 1W  is an eigenvector, with respect to the 

eigenvalue 1 , so we get: 

 

( ) 1

1
,0

2

nx n    

 

( )
( )( )
( )

11

1

sin
,

4 sin

n k
x n k

 



−
  for 1,..., .k =   

 

as we announced. This proves Corollary 20. 

 

We also deduce from the domination principle the simple estimate: 

 

1

1 1
sin

2 1 2

n

nX







 
 + 
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Indeed, 
( ) ( )1 11 1

1 1

2 1 1

sin cos sin
2 1

W V
 



= = =

+

. But this estimate is weaker than the 

one given by Corollary 19. 

 

V. Counting the paths 

 
Let us see what our result implies, in terms of number of paths at a given time. We recall 

that the barrier has been set at ( )2 1 + .  

 

We have to refer to the original settings of a 1  RW, because in our "all-even approach", 

where a path may go up 2 points, stay at the same level, or go down 2 points, all paths do 

not have the same probability (to stay at the same level is twice more likely than going up 

or down). So, we distinguish between: 

 

− The Random Walk (RW), taking values 1  with probability 
1

2
; 

− The 3-values Random Process (3VRP), taking values 2+  with probability 
1

,
4

 0  with 

probability 
1

,
2

 2−  with probability 
1

.
4

  

 

A "path" is, by definition, a set of values taken by the RW. 

 

The maximal value a path may take (without being annihilated by the barrier) is 2  and 

the minimal value is 2− ; in other words, we may say that the remaining paths are "con-

fined" in the strip  2 ,2 − . 

 

If M  is the matrix, of size   : 

 

3 1
0 ... ... ... 0

4 4

1 1 1
0 ... ... 0

4 2 4

1 1 1
0 0 ...

4 2 4

0

1 1 1
0 ... ... 0

4 2 4

1 1
0 ... ... ... 0

4 2

M

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
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and 
0

1
,0,...,0

2
X

 
=  
 

, let 
1

1 0

n

nX M X−

− = . Then, the system: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 ,0 ,0 1,1

1 1
2 , 2 , 1, 1, 1 , 1,..., 1

2 2

1
2 , 2 , 1,

2

e n f n x n

e n k f n k x n k x n k k

e n f n x n



  


= = −




 = = − + − + = −



 = = −

 (if 2  ) 

 

may be represented by a matrix 0P  with 1 +  rows and   columns: 

 

0

1 0

1 1
0

2 2

1 1
0 0

2 2

1 1
0

2 2

1
0

2

P

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  

 

Let 0 1 0n nF P M X−= ; this is the column-vector of the ( ),f n k . 

 

The total number of paths, confined in the strip  2 ,2 − , reaching the vertical 2nW , is 

therefore: 

 

( ) ( ) ( )
1

1

,0 2 , .
k

Nb paths f n f n k
−

=

= +   

Example: Assume 2 =  and 8n = ; the number of paths reaching the vertical 16W , con-

fined in the strip  4,4 ,−  is 38 000. 
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