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I. Introduction 
 

We consider a simple random walk in the plane : a sequence of random variables nX  with values 

1,  probability 1/ 2  in each case. Let 
1

N

N n

n

S X
=

=  be the sum of the first N  variables. This 

random walk can be viewed as a game between two players A  and B ; at the 
thn  step, the first 

player receives 1 Euro from the second player if 1nX = +  and conversely if 1.nX =  So the sum 

NS  represents the increase of fortune of A  compared to B  at the end of N  games; this increase 

may of course be positive or negative. At the initial moment, we set 0 0.S =  Besides that, each 

player has an initial fortune, which is finite, or infinite in a theoretical setting. The game may 

stop when one of the players is ruined (his fortune becomes equal to 0). The general question is 

to study the behavior of NS  (possible values, with their probabilities), the duration of the game, 

depending upon the initial fortunes, and the asymptotic behavior, when N →+ . 

 

 

Société de Calcul Mathématique SA 

Mathematical Modelling Company, Corp 

Tools for decision help 

since 1995 

 



2 
BB Simple Random Walks, Part I 

The behavior of NS  is determined by laws of Nature: one may repeat the experiment and check 

the results. But, at the same time, these laws are axiomatically defined, as we just did. Such 

random walks are probably the only example of laws of Nature which may be axiomatically 

defined: all laws in Physics are otherwise empirical. This remark, in itself, justifies a careful 

study of the situation: are the usual methods appropriate ? are there better ones ? 

 

Among the many existing results on this topic, let us mention in particular two which are well-

known: 

 

– Feller's "Gambler's ruin" ; see [Feller]. The problem may be stated as follows : given an initial 

fortune and a barrier, what is the probability to reach the barrier without having first 

reached the barrier 0y =  (which means ruin) ? The gambler's ruin does not care about a 

specific time, whereas we compute the probability for each specific time. We thank Doron 

Zeilberger for useful discussions about this comparison. 

 

– Asymptotic results : Khintchin's law of the iterated logarithm (1924); see [Khintchin]: almost 

surely, when :n→+  

 

( )( )
limsup 1

2

nS

nLog Log n
= +  and 

( )( )
liminf 1

2

nS

nLog Log n
= −  

 

Such results are probabilistic in nature and not quantitative at all. Here, on the contrary, we 

will present a new approach to such problems, which is "energy based" and not probabilistic. 

This will allow us to develop a unified framework, and to obtain quantitative estimates which 

were not known previously. 

 

Indeed, the probabilistic appearance of Khinchin's laws is misleading. Looking at such a 

statement, everyone has the feeling that, for a given player, there are some unknown forces 

which will, sooner or later, bring his fortune close to Khintchin's curves (a Khintchin curve is of 

the form ( )( )2y x Log Log x=  , of course). This is completely wrong ; at any time, the game 

is only governed by the 1  rule, with equal probability.  

 

What Khintchin's laws say, and, more generally, what any result about random walks says, is 

that there are more paths with some properties than paths with other properties. They are not 

individual results about each path; they are results about the number of paths with a given 

characteristic. Such results are in fact of combinatorial nature. For instance, at time n , the 

proportion of paths which never touched the curve y x=  tends to 0 when .n→+   

 

Our approach relies upon a concept derived from "energy absorption". We build an unified 

framework, which allows us to introduce tools derived from Analysis, Special Functions, and 

Operator Theory. 
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II. Basic settings 

 

A. Preliminary tools 

 

We first consider the setting of a 1  game, both players having no initial fortune. The viewpoint 

of a game between two players leads naturally to the study of the "trajectories" of nS  ; it will be 

modified later. 

 

At any time ,n  we have of course .nS n  The values of nS  are even if n  is even, and are odd if 

n  is odd. 

 

The following Lemma simply reflects the combinatorics (see for instance [Feller]): 

 

Lemma 1. - Let 
,n kA  be the point of coordinates ( ), ,n k  with ,..., .k n n= −  The number of paths 

from 0 to 
,n kA  is: 

 

( ),0

2

n k

n

N A n k

 
 → = +
 
 

 

 

Proof of Lemma 1 

 

If we want to reach this point in n  steps, we need x  times the value 1 and y  times the value 

1− , with x y n+ =  and x y k− = , which gives ,
2

n k
x

+
=  

2

n k
y

−
= . So there are 

n

x

 
 
 

 possible 

paths, which proves the result. 

 

When no confusion is possible, we will write ( ),N n k  instead of ( ),0 .n kN A→   

 

At a given time ,n  we have 2n
 paths starting at 0. Given a property, for instance "to be above 

the x  axis at time n ", we may count the number of paths which satisfy this property. Dividing 

by the total number 2 ,n
 we have the proportion of paths satisfying the property. This 

proportion, in its turn, may be viewed as a probability: in this case, the probability that the 

player ,A  at the instant ,n  has positive gains ( 0nS  ). So, the probabilities may always be 

viewed as proportion of paths, and conversely. 

 

There is always a difficulty in such statements, and one should be very careful about that: do 

we mean "at time n  precisely", or do we mean "at all times k n " ? Both, as we will see later, 

are completely different. The first type of statement is usually easy to obtain; the second type is 

much harder. 

 

As an example of statement of the first type, we have: 
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Lemma 2. – For all 1n  , ( )
1

0 .
2

nP S    

 

Proof of Lemma 2 

 

This is clear, since ( ) ( )0 0n nP S P S =  , ( ) ( ) ( )0 0 0 1n n nP S P S P S + = +  =  and  

( ) ( ) ( )0 0 0n n nP S P S P S =  + = . 

 

We already have two equivalent points of view: probability and proportions; we will introduce a 

third one, based upon the energy. 

 

B. Introducing the energy 

 

We consider that, at time 0, a unit of energy is put at the origin. This unit will then divide itself 

in two halves, at time 1n = , one at the point ( )1,1  and one at the point ( )1, 1− . More generally, 

every time a division point is met, the available energy divides equally into the two possible 

paths. So, for instance, at the time 2,n =  3 points will receive some energy, namely ( )2,2  

receives 1/4, ( )2,0  receives 1/2, ( )2,2  receives 1/4. At any step, in this configuration, the sum 

is always 1.  

 

In what follows, we will almost always restrict ourselves to the case where n  is even. This 

means that the elementary game consists in two repetitions, 1 2X X+ , with : 

 

( ) ( ) ( )1 2 1 2 1 2

1 1 1
2 , 0 , 2

4 2 4
P X X P X X P X X+ = − = + = = + = =         (1) 

 

So an energy put at any point will divide into four: one fourth 2 steps above, 

one half at the same level, one fourth 2 steps below: see picture. 

 

In this basic setting, since the energy 1 is put at O and since there is a total 

of 
22 n

 possible paths ( ) ( )2 ,22 ,2 0 n kN n k N A= →  at time 2 ,n  each point 
2 ,2n kA  receives an 

amount of energy, denoted by ( )2 ,2 ,n ke A or simply by ( )2 ,2 ,e n k  equal to: 

 

( ) ( )2 2

21
2 ,2 2

2
n n

n
e n k P S k

n k

 
= = =  

+ 
                                       (2) 

 

We see that the repartition of energy is given by a binomial law: there is more energy at the 

central points and very little energy at the extreme points 
2 ,2n nA  and 

2 , 2n nA −
. We see also that 

this binomial law is less and less concentrated when n→+  : the maximal value (obtained for 

0k = ) tends to 0.  
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Examples of energy distribution for 12n =  (red) and 24n =  (green) 

 

Since we restrict ourselves to the even values of , ,n k  let ( ) ( ), 2 ,2f n k e n k=  be the energy put 

at the point of coordinates 2 ,2 .n k  It satisfies for any ,...,k n n= −  : 

 

( ) ( ) ( ) ( )
1 1 1

, 1, 1 1, 1, 1
4 2 4

f n k f n k f n k f n k= − − + − + − +                              (3) 

 

Now, we observe, using the symmetry of the process, that: 

 

( ) ( ) ( )
1 1

,0 1,0 1,1
2 2

f n f n f n= − + −                                                (4) 

 

Therefore, we will consider equations (3) and (4) for 0,...,k n=  only. 

 

In the next paragraphs, we investigate the repartition of energy, on horizontal lines and on 

diagonals, in the case of a starting value of energy 1 at the origin. 

 

C. Horizontal lines 

 

We first study the decrease of probability on each horizontal line.  

 

The probability to reach ( )2 ,2n k  is ( )
2

21
,

2 n

n
f n k

n k

 
=  

+ 
 and the probability to reach 

( )2 2,2n k+  is ( )
2 2

2 21
1,

12 n

n
f n k

n k+

+ 
+ =  

+ + 
. The condition ( ) ( )1, ,f n k f n k+   is equivalent to: 

 

2 2 21

14

n n

n k n k

+   
   

+ + +   
 

 

which, after simplification, reduces to: 
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21 2n k+   

 

So, for fixed ,k  the probability first increases and then decreases. For a given ,k  ( ), 0f n k →  

when .n→+   

 

D. Diagonals 

 

We investigate the probability to reach a point ( )2 2 ,2 ,n k k+ that is the 2 thk  point on the 2 thn  

diagonal. We use only even values, as before. The 0th
 diagonal, denoted by 0D , contains 1 at the 

origin an then 
1

4k
 at the 2 thk  place. So the values are decreasing. The probability to reach 

2 2 ,2n k kA +
is ( )

2 2 2 2

2 2 2 21 1
,

22 2n k n k

n k n k
f n k k

n k n+ +

+ +   
+ = =   

+   
, which is decreasing in ,k  for fixed .n   

 

E. Further changes of variables 

 

We introduce a new notation, which will be useful in Part II. 

 

We set, for any 1n   and k n  : 

 

( ) ( ) ( )( )
1

, , 1 ,
2

x n k f n k f n k= − +  

 

Lemma 3. - We have, for any ,n  k n  : 

 

( )
2 1

2 11
,

2 n

n
x n k

n k+

+ 
=  

+ 
 

 

Proof of Lemma 3 

 

Indeed, we have: 

 

( ) ( ) ( )( ) 2 1 2 1

2 2 2 11 1 1
, , 1 ,

12 2 2n n

n n n
x n k f n k f n k

n k n k n k+ +

+      
= − + = + =      

+ − + +      
  

 

using Pascal's formula. This proves Lemma 3. 
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III. Extension of the framework 
 

Previously, we considered only the situation of an energy put at the origin, but obviously the 

same holds if this energy is put at any point of the Oy  axis, with same conclusions about its 

propagation. Obviously also, we may consider several initial points, with coordinates ( )0, ,ky  

each of them with its own initial energy .ke So, finally, the proper framework is a distribution 

of energy over the whole Oy  axis. This distribution must be summable, in the sense that 

.ke
+

−

 +  Therefore, our natural framework is the set ( )1l  of summable sequences. If we 

restrict ourselves to the even situations, we have the same rules as before. Let ,ka k    be the 

energy put at the point of coordinates 0,2k (vertical axis). Its image kb  on the axis 2x =  satisfies 

for any :k   

 

1 1

1 1 1

4 2 4
k k k kb a a a− += + +                                                    (3) 

 

Let T  be the operator defined by equation (3) above; this is a linear operator, which is an 

isometry in ( )1 ,l  meaning that the total energy at the 
thn  step is the same as the energy at 

the beginning. 

 

We observe also that this general framework would make sense also for negative 'ka s  (negative 

energy). 

 

We have seen earlier that, if we start with the energy 1 at the origin, at the 
thn  step, the 

distribution of energy is given by a binomial law, which has the highest value on the x  axis and 

becomes flatter and flatter when n  increases. If we start with the energy 1 at any point on the 

y  axis, say for instance 10y =  (that is 5k = ), then, of course, the same holds: the distribution 

of energy will be symmetric with respect to the horizontal line 10.y =  

 

But the question becomes more interesting if we start with a more general setting, say for 

instance energy 2 / 3  at the origin and energy 1/ 3 at the point ( )0,10 .  Since the propagation 

operator is linear, what we get is 2/3 of the energy linked with the first situation alone plus 1/3 

of the energy linked with the second situation alone. Therefore, one would expect that the 

resulting distribution has two "bumps" : one on 0x =  and one on 10.x =  But this is not the case. 
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Distributions of energy for 2n =  (in red) and for 10n =  (in green) 

 

We see on the picture above that the bumps indeed exist for small ,n  but tend to disappear 

when n  increases. 

 

 

Distributions of energy for 2n =  (in red), for 10n =  (in green), 50n =  (in yellow) 

 

In fact, on a given interval (here  12,12− ), the distribution tends to become flat, and the highest 

value tends to 0, when n  increases. 

 

In order to understand what happens, let us write the energy at the point ( )2 ,2n k  resulting 

from both sources. It is, by definition: 

 

( )
2 2

2 22 1 1 1
,

53 2 3 2n n

n n
g n k

n k n k

   
= +   

+ − +   
 

 

We write this as: 

 

( )
( ) ( ) ( )

( ) ( ) ( )2

2 1 41 2 1
,

2 3 3 1 2 5n

n n k n k n k
g n k

n k n k n k n k

 + + − + − 
= +  

+ − + − + − +  
 

 

Fix any vertical interval, say for instance  100,100 .−  Then, for any k  in this interval, the 

quantity ( )
( ) ( ) ( )

( ) ( ) ( )

1 4
, 1

1 2 5

n k n k n k
q n k

n k n k n k

+ + − + −
= →

− + − + − +
 when .n→+   
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In other words, on this interval, for n  large enough, the distribution of energy is equivalent to 

the distribution sent by the origin alone: it becomes more and more constant on the whole 

interval, and this constant tends to zero when n  increases. 

 

But still the term ( ),q n k  brings a correction, which is to be found at a position tending to 

infinity on the vertical axis. Take for instance k n=  ; we have: 

 

( )
( )( ) ( ) ( )

5
2 2 1 2 4 2

,
5! 5!

n n n n
q n n

− −
=  

 

and, the same way, for 5k n= − + :  

 

( )
( ) ( ) ( ) ( )

5

5! 5!
, 5

2 4 2 3 2 2
q n n

n n n n
− + =

− −
 

 

So, at the point ( )2 ,2 ,n n  the energy sent by the mix 2 / 3  at the origin, 1/ 3 at the point ( )0,10  

is 
( )

5
2

5!

n
 higher than the energy sent by the origin alone, and at the point ( )2 , 2 10n n− +  it is 

( )
5

2

5!

n
 lower. Of course, this happens at places where ( ),f n k  is extremely small: roughly 

2

1
.

2 n
 

 

We see here the comparative behavior of ( ),g n k  and ( ),f n k  sent by the origin alone: 

 

 

f  in green, g  in red 

 

So the differences in energy are marked at the endpoints of an interval, the size of which 

increases when n  increases. Inside this interval, no matter what the initial distribution is, the 

energy tends to be constant (that is, flat). 

 

This behavior is quite strange, and make things difficult if we want to investigate an "inverse" 

problem, namely, from the distribution of energy at some stage 2 ,n  reconstruct the initial 

distribution of energy. We see that, in order to succeed, we need to consider the whole vertical 

axis 2x n=  and that a given interval in it, such as  100,100− , will not be sufficient. 
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IV. Introducing a barrier 

 

People usually think that, most of the time, the gain will go to +  or to −  : either you are in 

a good day, or in a bad day. But this is not true at all, and the reality is much more complex, as 

we now see. In order to study this question, we will see how often the RW goes above any 

horizontal line. 

 

A. General definition 

 

In the preliminary approach, the total amount of energy remains the same at each time step. 

Now, we introduce a curve, ( )y x=  located in the upper half-plane (the same holds for the 

lower half-plane, of course), and we want to investigate the probability that the random walk, 

up to time ,n  remains constantly below this curve, which means that ( ) ( )S j j  for all 

1,..., .j n=  Later, we will investigate the probability to remain between the curve and its 

symmetric, which means ( ) ( )S j j , or, more generally, to remain between two curves : 

( ) ( ) ( )1 2j S j j −   . 

 

Our representation, in order to investigate this phenomenon, will be the fact that the curve   

absorbs the energy. This means that, for any path which touches the curve, the corresponding 

energy disappears.  

 

 
Example of energy absorption 

 

In this example, the point A  sends its energy to both B  and C , but B  is on the curve we have 

introduced, so this part of the energy disappears, and we are left with ( ) ( )
1

2
e C e A= . 

 

The curve we introduce will be called the critical curve. It may be considered as a "black frontier" 

(in the sense of a black hole), meaning that it absorbs all energy it receives, and sends back 

nothing. 

 

We have: 
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Proposition 4. - Let ( )y x=  be any critical curve, in the upper half-plane. The total energy 

left, at time n , is equal to the total probability to reach any of the points 
,n kA  below the curve, 

that is ( )k n , without ever touching the curve at any time before ( j n ). 

 

Proof of Proposition 4 

 

This is a mere rephrasing of the disappearance of energy. Any time a path touches the curve, it 

is annihilated, so what remains is the set of paths which never touched the curve. 

 

If a time n  is fixed, and a curve   is fixed, we will call admissible a path with never touches it 

(at any time j n ). For any point A  in the plane, let ( )adN A  be the number of admissible 

paths, starting at 0, which reach ,A  and ( )
( )

2

ad

ad n

N A
p A =  the probability to reach A  by an 

admissible path. Proposition 4 states that: 

 

( ) ( )
( )

, ,

n

n k ad n k

k n k n

e A p A
=− 

=   

 

B. The case of an horizontal line 

 

We now compute the number of admissible paths when the critical curve is a simple horizontal 

line segment. As we already said, we restrict ourselves to the even case. 

 

To say that the critical curve is set at 2y =  means that this is the original fortune of player 

,B  and that he will be ruined if 2 2nS =  (the fortune of B  is now equal to 0). 

 

Let 2y =  be an horizontal line and  2 2 ,2 ;n n yW A n y n= −    be the vertical segment for 

2 .x n= We denote by 2nE  the total energy on this vertical: ( )2 2 ,2

n

n n k

k n

E e A
=−

=  . In this setting, 

2nE  is the probability that the game reaches time 2 ,n  or, in other words, did not stop earlier. 

 

The following Proposition is known as the "reflection principle": 

 

Proposition 5. - Let 2y =  ( 0  ) be an horizontal line segment. Let 
2 ,2 ,n kA  with coordinates 

( )2 ,2 ,n k  be any point that the random walk may reach, with .k   The number of paths, 

starting at 0, finishing at 
2 ,2n kA , which touch the horizontal segment at a time before 2n  is 

( )2 ,4 2N n k − , where 
2 ,4 2n kA −  is the symmetric of 

2 ,2n kA with respect to the line segment. 
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Proof of Proposition 5 

 

Let B  be the first time a path touches the segment (there may be several). There are as many 

paths from B  to A  than from B  to ,A symmetric of A  with respect to the barrier. 

 

 
The reflection principle 

 

The symmetric of 
2 ,2n kA  is 

2 ,4 2n kA −
. So the number of paths which touch the segment 2y =  at 

any time before n  is, by Lemma 1: 

 

( )
2

2 ,4 2 .
2

n
N n k

n k




 
− =  

+ − 
 

 

This proves Proposition 5. 

 

Corollary 6. - Assume 0 .k    The number of paths, starting at 0, which reach 
2 ,2n kA  

without touching the segment 2y =  at any time m n  is: 

 

( )
2 2

2 ,2 ; 2 , 1,..., .
2

m

n n
N n k S m n

n k n k




   
 = = −   

+ + −   
 

 

Proposition 7. - Assume that our critical curve is the line segment 2y = , 1.   The energy 

left at time 2n  is: 

 
1

2 2

21
.

2
n n

k

n
E

n k





−

=−

 
=  

+ 
  

 

Proof of Proposition 7 

 

The critical line segment 2y =  has two effects: 

 

– No point 
2 ,2n kA  above this segment, that is ,k    receives any energy at all; there is a drop 

of total energy equal to the probability to reach this point; 
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– For every point strictly below this segment, that is ,k   there is a drop of energy equal to 

the probability to reach its symmetric. 

 

This gives: 

 

2 2 2 2 2
1 1

1

2 2 2
1

2 2 2 21 1 1 1
1 1

22 2 2 2

2 2 21 1 1
1

2 2 2

n n n n n
k k k j

n n n
k j k

n n n n
E

n k n k n k n j

n n n

n k n j n k

   



  

  −   +

−

  + =−

       
= − − = − −       

+ + − + +       

     
= − − =     

+ − +     

   

  

  

 

This proves Proposition 7.  

 

In this setting, 2nE  is the probability that the game has not stopped at time 2 ,n  which means 

that the barrier was not touched, or, in familiar words, that player ,B  who had an initial fortune 

of 2  Euros, has not been ruined so far. The quantity 21 nE−  is the probability that the player 

B  gets ruined before time 2 .n   

 

Let us assume for example that 100 =  Euros, so the initial fortune of B  is 200 Euros. Using 

Proposition 7, we find that if 10 000,n =  2 0.84nE =  and if 100 000,n =  2 0.35.nE =  In other 

words, even with a small initial fortune, B  is not going to get ruined quickly. 

 

If B's initial fortune is 1000 Euros, he has probability 
1

2
 to stay in the game for 5 092 958n =  

time steps and probability 0.95  to last at least 1 410 791n =  time steps. 

 

It is clear that 2 0nE →  when .n→+  Indeed, in the expression 
2 2

21

2
n n

j

n
E

n j



=−

 
=  

+ 
 , there is 

a fixed number of terms and each term tends to 0 when n→+ . We will make this statement 

quantitative later (see the paragraph "Gaussian Interpretation"). 

 

C. Different positions of the barrier 
 

Let us see what difference it makes when the barrier is set at 2  or 2 1 + . 
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Let us look at the figure above ; the point A  satisfies 10.y =  If we put the barrier at 11y =  

(dotted line), then the vector AB  does not exist, and the energy in C  is 
1

4
 of the energy of .A  

If we put the barrier at 12y =  (upper line), the vector AB  exists, and the energy in C  is 
1

2
 of 

the energy of .A  This will modify the entries (first and last row) of the matrix describing the 

process, and will be studied in detail in Parts II and III. 

 

D. Present and past times 
 

The following Corollary relates the behavior at time n  with the behavior at time .n  It will be 

useful later. 

 

Corollary 9. - For any integer   and any 1,n   we have: 

 

( ) ( )2 2, 2 2 2 .m nP m n S P S       

 

Proof of Corollary 9 

 

The left hand side is the probability to touch the horizontal line before time 2n  ; its value is, by 

Proposition 7, is: 

 

2 2

2 21
1

22
n n

k k

n n
E

n k n k   

    
− = +    

+ + −    
  . 

 

For the right hand side, we have: 

 

( )2 2

21
2

2
n n

k

n
P S

n k




 
 =  

+ 
   

 

But 
2 2

2k k

n n

n k n k  

   
   

+ − +   
  . This proves Corollary 9. 

 

We give another proof, which is not of combinatorial type, but purely probabilistic. It comes from 

[Velenik], §2.3. The comparison between both types of proof is interesting. 

 

For any fixed x  real, we set: 

 

 inf 0,x kk S x =    

 

This is the first time when the sequence kS  is above the value .x  The events  x k =  are 

mutually disjoint, and we have: 
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   
1

, .
n

k x

k

P k n S x P k
=

   = =  

 

For 1,..., ,k n=  we introduce the event: 

 

 .k k nU S S=   

 

The events  x kk U = , 1,..., ,k n=  are a partition of the event  nS x ; indeed, they are 

disjoint and their union is the set  nS x : if ,nS x  there is a k , 1 k n   such that kS x .  

 

Therefore: 

 

   ( ) ( ) ( )
1 1

.
n n

n x k x k

k k

P S x P k U P k P U 
= =

 = = = =   

 

Indeed, the event x k =  depends upon 1,..., ,kX X  and the event kU  can be written 0,n kS S−   

that is 1 0k nX X+ + +   ; so, it is independent from 1,..., kX X . 

 

We have: 

 

( ) ( ) ( ) ( )1,...,

1 1

min .
n n

x k k n k x

k k

P k P U P U P k =

= =

=  =   

 

But ( ) ( )1

1
0

2
k k nP U P X X+= + +    by Lemma 2 above: all partial sums have the same law. 

Therefore: 

 

( ) ( ) ( ) ( )( )
1 1

1 1
.

2 2

n n

x k x x

k k

P k P U P k P k  
= =

=  = = =   

 

But the set ( )x k =  can be described by the fact that there is a ,k  1 ,k n   such that .kS x  

This proves Corollary 10. 

 

E. The x  axis as a special case 
 

We are interested by the situation where the barrier is the x  axis; in terms of fortunes, it 

corresponds to the case where B  has no initial fortune at all, and there is no restriction on .A  

Our question is: what is the probability that the game lasts at least 2n  moves ? The player B  is 

ruined if the random walk touches the x  axis. Of course, in order that the game initially starts, 

the player B  must win the first two games. So the starting point is 
2, 2A −

which is reached with 

probability 1/ 4.  Then the game should not touch the x  axis, and the probability is the same as 

for a starting point ( )4,0A  and a barrier at 2 2 = .  
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Proposition 10. - Assume that B  has no initial fortune. The probability that the game lasts at 

least 2n  moves is: 

 

2 2

2 1 21 1 1
.

2 2 4n n

n n
p

n n−

−   
= =   

   
 

 

Proof of Proposition 10 

 

Using Proposition 7 with 1, =  we find: 

 

2 2 2 2 2

2 2 2 2 2 11 1

1 22 2
n n n

n n n
E

n n n− −

− − −      
= + =      

− −      
 

 

which proves Proposition 10. Direct computation shows that, for 31,n   0.05p   and for 

795,n   0.01.p    

 

 
 

The total number of paths from 0, which do not touch the x − axis before time 2n  is equal 

to the total number of paths from ( )2,2A  to ( )2 ,2B n  and to ( )2 ,4C n . 

 

Using Stirling's formula, we may easily compute an asymptotic estimate, when n→+ : 

  

( )
3/2

1 1
2

2
P B resists for at least n moves O

nn

 
= +  

 
 when n→+ . 

 

We can derive from Proposition 10 the probability that a path never touches the x  axis at any 

time 2n  : 

 

Proposition 11. - The probability that a path, starting at 0, reaches the vertical 2nW  without 

ever touching the x  axis is: 

 

( )2 2

21
0, 1,...,

2
m n

n
P S m n

n

 
 = =  

 
 

 

Indeed, there are two groups of paths : those which are constantly above and those which are 

constantly below the axis, both with same probability. This proves Proposition 11. The proof we 

presented here is much simpler than the one which can be found in the book by [Kalbfleisch]. 
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Take for instance 1 000,n =  so we play 2000  games. We find: 

 

( )2 0, 1,..., 0.018mP S m n = =  

 

which means that 98.2 % of the paths have returned to the x  axis, at least once, before time 

2000.  This proportion increases when n  increases: it is not true that, in general, nS  tends to 

+  or −  : we see instead that an increasing proportion of the paths keep returning to the x  

axis: the fortunes are equal. 

 

We have now a clearer picture of the aspect of most paths. Of course, a small number among 

them will tend to+  or ,−  but the largest proportion (increasingly large when n  increases) 

will "oscillate" : they reach high values, return to 0, reach high negative values, return to 0, and 

so on. 

 

V. Gaussian interpretation  

 

We have, using the approximation of the binomial law by the normal law, for fixed 1 2,  : 

 

( )

2

2

1

1

2

1 2 2 2 2

21
2 2 exp

2 2 2
n n

j

n t dt
P S

n j









 
  =

  
  =  −  

+   





 ,     with 
2 2n = . 

 

We want to make this approximation precise. 

 

Proposition 12. (Chernoff's Inequality) – For any n  and any ,k  0 k n  , we have: 

 

( )
2

exp
2

n

k
P S k

n

 
  − 

 
 

 

Proof of Proposition 12 

 

We know that ( ) 0nE S =  and ( )var .nS n=  Using Markov's Inequality ( )
( )E X

P X 


  , we 

write, for any 0  : 

 

( ) ( ) ( )n nS Sx x

nP S x P e e e E e
  − =    

 

We have also: 

 

( ) ( )1

1

n k

n
n

S X Xx x xe E e e E e e Ee
    − − − 

= = 
 
  

 

But: 
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( )
2

1 /2

2

X e e
E e e

 
 

− +
= 

 
                                                (1) 

 

Indeed, 

 

( )

2

02 2 !

k

k

e e

k

  − +

=

+
= , 

2
2

/2

0 2 !

k

k
k

e
k

 +

=

=  

 

and ( )2 ! 2 !k k k  which proves (1). We deduce from (1), for any  : 

 

( )
2 /2x n

nP S x e e −   

 

and if we take 
x

n
 = , we obtain the required estimate. This proves Proposition 12. 

 

Proposition 13.- For all 1 2   and all ,n  we have the estimate: 

 

2

2

1

1

2

2

2 2
1

2

21 2
exp

2 2 2
n

k

n t dt

n k n









  = +

   −
−   

+   





  

 

Proof of Proposition 13 

 

It follows from Berry-Esseen Theorem [Berry-Esseen], which may be stated as follows: 

 

For all x  and all n : 

 

2 1
exp

2 2

x

nS t dt
P x

n n
−

 − 
 −   

   





 

 

which we write under the form: 

 

( )
2

2

2 2

1
2 exp

2 2 2

x n

n

t dt
P S x n

n  
−

 −
 −  

 





, with 2n =  

 

or, with 
1

2

2

x n
 = : 
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( )

12

2

2 1 2

1
2 exp

2 2 2
n

t dt
P S

n




  

−

 −
 −  

 





 

 

We know that: 

 

( )
1

2 1 2

21
2

2
n n

k

n
P S

n k




 
 =  

+ 
  

 

Therefore: 

 

1

1

2

2

2 2

21 1
exp

2 2 2 2
n

k

n t dt

n k n



   

−

   −
−   

+   





                                   (1) 

 

and also with 2  : 

 

2

2

2

2

2 2

21 1
exp

2 2 2 2
n

k

n t dt

n k n



   

−

   −
−   

+   





                                (2) 

 

Taking the difference, we obtain the statement of Proposition 13. 

 

Proposition 13 has an interpretation, namely that the energy, on any vertical 2nW , between the 

levels 12  and 22 , may be viewed as a gaussian integral between these two levels, the variance 

of the law being the distance between 0 and the vertical (this distance is 2n ). The error in this 

approximation is smaller than 
2

n
. 

 

We immediately deduce an estimate for the sum 
2

21

2 n
k

n

n k



=−

 
 

+ 
 , valid for all n  : 

 

Proposition 14. - For all   and ,n  we have the estimate: 

 

2

2 2
.nE

nn




 +  

 

Proof of Proposition 14 

 

Indeed, from Proposition 13: 
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2

2 2
2 2

2 2

22

2

2 2 2 2
exp exp

2 22 2

n

n

n

t dt t dt
E

n n nn









    
−

−

   − −
 + = +  +   

   

 
 
 

 

 

which proves Proposition 14. 

 

We now turn to lower estimates for ( )nP S k , in terms of Gaussian integrals. 

 

Proposition 15. -  If 32n e  and k n , we have, with 
1

4 2
c


= : 

 

( )
2

exp
2

n

k
P S k c

n

 
  − 

 
 

 

Proof of Proposition 15 

 

We write Berry-Essen Theorem under the form: 

 

For all x  and all n : 

 

2 1
exp

2 2

n

x

S t dt
P x

n n

+

 − 
 −   

   





 

 

With 
k

x
n

= , it gives: 

 

( )
2 1

exp
2 2

n

k

n

t dt
P S k

n

+

 −
  − 

 





 

 

Let ( )f x  be the density of Gauss Law and ( )F x  be the repartition function; we have the 

estimate, for all 0x   ([Komatsu]): 

 

( )
( )

2

2

4

f x
F x

x x


+ +
 

 

which gives here: 
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2

2

2

exp
2 2

4k

n

k
f

t dt n

k k

n n



+  
  −   

 
+ +





 

 

But, if k n  then 
2

4 5 1 4
k k

n n
+ +  +   and: 

 

2 21
exp exp

2 22 2 2
k

n

t dt k

n 

+

   −
 −   

   





 

 

Moreover, 

21 1
exp

24 2

k

nn 

 
 − 

 
 is satisfied since: 

 

21 1 1 1
exp exp

2 24 2 4 2

k

nn  

  
 −  −   

   
 

 

which is realized, since we assumed 32 .n e  

 

So we obtain: 

 

( )
2 2 2 21 1 1 1

exp exp exp exp
2 2 2 22 2 2 4 2 4 2

n

k

n

t dt k k k
P S k

n n nn   

+

       −
  −  − − − = −       

       





 

 

which proves Proposition 15. 

 

For 0, =  we find the estimate 
2

2
nE

n
 , whereas a direct application of Stirling's formula 

gives 2

1
nE

n
 , so the estimate in Proposition 15 is not best possible. 

 

Corollary 16. – If the initial fortune of B  is 2 ,  the probability that the game lasts at least until 

time 2n  satisfies the asymptotic estimate: 

 

2

2 2
.nE

nn




 +  

 

This is an immediate consequence of Proposition 15. 
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The setting in terms of Gaussian integrals is much easier to handle, since these integrals are 

simpler to manipulate than binomial sums. Let us give a complete reinterpretation of the 

previous paragraph: energy absorption in case of a barrier at . In this continuous setting, there 

is no need to differentiate between the odd and even cases, which is also a simplification.  

 

The symmetric of a point 
,n tA  with respect to the barrier y =  is 

,2n tA −
. We have: 

 

Proposition 17. - The density of energy sent by 0 to the point 
,n tA , taking into account the 

annihilation by the barrier, is : 

 

( )
( )

22

2 2

21
exp exp

2 22
n

tt
f t



  

  − 
 = − − −         

, for t  , 0 if t   

 

with n = .  

 

Proof of Proposition 17 

 

This is a mere rephrasing of the previous results, and we see that the function is simply the 

difference of two gaussian functions with same variance. 

 

From Proposition 17, we easily deduce the amount of energy on each vertical: 

 

Corollary 18. - At each step ,n  the energy left is: 

 
2/

2

/
2

n x

n

n

dx
E e

n






−

−

=   

 

Proof of Corollary 18 

 

Indeed, this follows from the formula: 

 

( )
22 2

2 2

2 2

tt

n n
n

dt dt
E e e

n n

 

 

−
− −

− −

= −
  

 

We deduce from Corollary 18 the asymptotic estimate: 

 

2
nE

n



 

 

We also obtain the profile of energy, on the vertical nW , that is the position of the point of 

maximal energy: 
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Proposition 19. - The point of maximal energy on the vertical nW  is the unique 0t   solution of 

the equation : 

 

( )2
exp

2

tt

t n

 



− − 
=  

−  
 

 

If   is fixed and ,n→+  it satisfies: 

 

21 3
4

2 2
t n


 − + +  

 

which shows that t→−  when .n→+   

 

Proof of Proposition 19 

 

We have to find the maximum of the function nf . The derivative is: 

 

( )
( )

22

2 2 2 2

21 2
exp exp

2 22
n

tt t t
f t



    

  −  −
  = − − + −         

 

 

So, the condition 0nf  =  is equivalent to: 

 

( ) ( )
22

2 2

2 2
exp exp

2 2 2

t tt t

t n

  

  

 − − − 
= − =    −   

                               (1) 

 

Since the right hand side of (1) is positive, we must have 0.t   Consider the function 

( )
2

t
h t

t 
=

−
 ; the derivative is ( )

( )
2

2
0

2
h t

t





−
 = 

−
, so the function is decreasing, has the limit 

1 at −  and takes the value 0 at 0.t =  The function ( )
( )2

exp
t

g t
n

 − − 
=  

 
 is increasing, has 

limit 0 when ,t →−  takes the value 

22
exp 0

n

 −
 

 
 at 0t = . Therefore, a unique solution 

0t   of equation (1) exists.  

 

When ,n→+  we have the rough estimate: 

 

( )2
1

2

tt

t n

 



−
−

−
 

 

that is: 
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21 3
4

2 2
t n


 − + +  

 

which implies that nt → −  and proves Proposition 19. 

 

 
 

Graph of ( )nf t  for 7, = 20n =  (red), 100n =  (green) 

 

 

VI. Operator Theory approach 
 

We have seen two approaches of our problem: one is probabilistic (result of a game), one is by 

means of a distribution of energy, and we have proved that they were equivalent. We now come 

back on the general framework introduced in §III above and develop the Operator Theory 

approach; further results will be given in Part II. 

 

A. General settings 
 

Let us first return to the general settings (no barrier). At any time, the energy put at a point 

divides into two equal parts. Therefore, we may consider that this is the action of an operator 

,T  defined by: 

 

( )1 1

1

2
k k kTe e e− += +  for any ,k  positive or negative ( k ). 
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This definition is more general than our original game, since it takes 

into account any repartition of energy on the y  axis, and not just at the 

origin, as the next picture shows. 

 

Such an operator may be considered as acting on ( )2l , Hilbert space 

of real square summable sequences, endowed with the norm: 

 

( )
1/2

2

2n nn
n

 
+


=−

 
=  
 
  

 

It may also be considered as acting on the space ( )1l , Banach space of real absolutely 

summable sequences, with the norm (see [BB_Banach]) : 

 

( )
1n nn

n

 
+


=−

=   

 

In both cases, its general definition is: 

 

1 1

2

n n
n n n

n n

T e e
 

 − ++   
=   

  
                                              (1) 

 

Proposition 20. – Both on ( )2l  and ( )1l , the operator T  is a contraction (that is, 1T  ). 

 

Proof of Proposition 20 

 

Indeed, on ( )2 ,l  we have, if 
n n

n

X e= : 

 
2

2 22 21 1
1 12 2

1

2 2

n n
n nTX X

 
 − +

− +

+   
=  + =   

   
    

 

The proof is similar on ( )1 .l  

 

We observe that the norm of the operator is exactly 1. This is obvious on ( )1l  since if 0 ,X e=  

1 1

1
1

1
2

e e
TX − +

= = . 

 

On ( )2 ,l consider the vector 1 NX e e= + + ; we have 
2

X N=  and:  

 

0 1 1
2 1

2 2 2 2

N N
N

e e e e
TX e e +

−= + + + + +  
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and the norm is: 

 
2

2
1 2 1TX N N= + − = −   

 

so 2

2

1
TX

X
→  when N →+  : this proves our claim : on both spaces, the norm of the operator 

is precisely 1. 

 

We now proceed to the study of the spectrum of T  : ( )  ; is not invertibleT T I  = − . 

 

Proposition 21. - The operator T  has no eigenvalue on ( )2l . 

 

Proof of Proposition 21 

 

Since T  is a contraction, the eigenvalues must satisfy 1 1−   . Assume   is a (real) 

eigenvalue. Then we deduce from (1) that, for all n : 

 

1 1

2

n n
n

 
− ++

=  

 

or :  

 

1 12n n n  + −= −                                                          (2) 

 

We first show that 1 =  is impossible. Indeed, (2) becomes: 

 

1 12n n n  + −= −  

 

which gives: 

 

2 1 1 0   − = −   

3 2 2 1 1 0     − = − = − , and so on: for all n : 

 

1 1 0n n   + − = −   

 

But since 2n l  , we have 1 0n n + − →  when n→+ , which implies 1 0 =  and 0n =  for 

all ,n  and 0,n =  which proves our claim in this case. 

 

We now show that 1 = −  is also impossible. Indeed, in this case, (2) becomes: 

 

1 12n n n  + −= − −  

 

which gives: 
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( )2 1 1 0   + = − +   

( )3 2 2 1 1 0     + = − + = + , and so on: for all n : 

 

( ) ( )1 1 01
n

n n   + + = − +   

 

But since 2n l  , we have 1 0n n + + →  when n→+ , which implies 1 0 = −  and 

( ) 01
n

n = −  for all ,n  and 0,n =  which proves our claim also in this case. 

 

The identity (2) implies that, for all ,n  we can express n  as a linear combination of 1 0,   ; the 

coefficients will be some polynomials ( ) ( ),P Q  . We state the result as a separate Lemma: 

 

Lemma 22. – Let   with 1 1−    and assume that a sequence of real numbers n  satisfies: 

 

( ) ( )1 0n n nP Q    = +                                                    (3) 

 

for some polynomials ( ) ,nP   ( )nQ  . Then if the sequence 0n → when n→+  (which is the 

case if the sequence is in 2l  or in 1l ), this is possible only if 0n =  for all .n   

 

Proof of Lemma 22 

 

Substituting (3) in (2), we get the induction relations: 

 

1 12n n nP P P+ −= −     (4) 

 

1 12n n nQ Q Q+ −= −   (5) 

 

Writing 1 1 0 0, ,   = =  we have the first relations : 

 

1 11, 0P Q= =  and 0 00, 1P Q= =  (6) 

 

From (4) and (6) follows that 1n nP U −= , Chebyshev's polynomial of second kind. 

 

For ,Q  we have from (5) and (6) : 

 

2 1Q = −   

3 2Q = −   

4 3 22Q Q Q= −  and so on, 

 

from which follows that 2.n nQ U −= −   
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Therefore, coming back to (3), we get: 

 

( ) ( )1 1 2 0n n nU U    − −= −  for 1n               (7) 

 

Set cos . = We have ( )sin 0   since 1   . We know that: 

 

( )( )
( )
( )1

sin
cos

sin
n

n
U





− =        (8) 

 

and: 

 

( )( )
( )( )
( )2

sin 1
cos

sin
n

n
U





−

−
=  

 

and (7) gives : 

 

( )
( )

( )( )
( )1 0

sin 1sin

sin sin
n

nn 
  

 

−
= −    (9) 

 

Writing ( ) ( )( ) ( ) ( )( ) ( )sin sin 1 cos cos 1 sinn n n    = − + − , we obtain: 

 

( )( ) ( )

( )
( )( )

( )( )
( )

( )( )
( ) ( )

( )( )

1 0

1 0
1

sin 1 cos sin 1
cos 1

sin sin

sin 1 cos 1
tan sin

n

n n
n

n n

  
   

 

 
  

 

 − −
= + − − 
 
 

 
= − − + − 

 

 

 

We have two cases, depending whether   is or is not a rational multiple of  : 

 

Assume first 
k

N


 = ; we take 1 .n N− =  Then: 

 

( )
( ) ( )

( )1 0
1 1sin cos

tan sin
n k k

 
    

 

 
= − + = 

 
  

 

Since 0,n →  this implies 1 0. =   

 

Assume now that 



 is irrational. Then, by Kronecker principle (1884), we can find a sequence 

kn  of integers such as ( )1kn  − → , which implies 
1kn →−  and the same conclusion follows. 

This proves Lemma 22.  
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We have proved that if a vector 
n nX e=  satisfies ,TX X= then 0 1 0. = = =  But we 

may write (2) under the form: 

 

1 12n n n  − += −  

 

which implies that 1 0,− =  and so on inductively. So we have 0X =  and Proposition 21 is 

proved. 

 

Since 0 =  is not an eigenvalue, the operator T  is injective (one to one). 

We now continue our investigation on the space ( )2 .l   

 

Proposition 23. - The operator T  is self-adjoint. 

 

Proof of Proposition 23 

 

Indeed, for all Y : 

 

* , ,T X Y X TY=   

 

If ,n nX e=  
n nY e= , *

n nT X e= , we have: 

* , n nT X Y  =  

1 1 1 1,
2 2

n n n n
n nX TY
   

 − + − ++ + 
= = 

 
   

Since this is true for all ,n  we have 1 1

2

n n
n

 
 − ++

=  for all ,n  which proves our claim. 

 

Since T  is self-adjoint, its spectrum must be real, more precisely included in the interval  1,1 .−  

We observe that the operator is not positive (meaning that , 0TX X   for all .X ). Indeed: 

 

( )1 1 1

1
,

2
n n n n n

n n

TX X     − + −= + =   may not be positive : take 0 11, 1, = = −  and all 

others 0. 

 

Proposition 24. – For any ,  1 1,−    the image of T I−  does not contain 0.e   

 

Proof of Proposition 24 

 

Assume conversely that, for a sequence n  in ( )2l : 
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( )1 1 0

1

2
n n n ne e  − +

 
+ − = 

 
   

 

It means that : 

 

( )1 1

1
0

2
n n n  − ++ − =  if 0n   and 1=  if 0.n =   

 

From which we deduce: 

 

( )1 1

1

2
n n n  − += +  if 0n    (1) 

 

( )1 1 0

1
1

2
  − + = +                (2) 

 

The cases 1 =  and 1 = −  are treated as in the proof of Proposition 21. Assume now 1 1.−    

From (1) we get, for all 0n   : 

 

1 12n n n  + −= −   

 

From this follows that, for some polynomials ( ) ( ),n nP Q   : 

 

( ) ( )1 0n n nP Q    = +   

 

Lemma 22 above shows that, with ( )cos = : 

  

( )( )
( ) ( )

( )( )1 0
1sin 1 cos 1

tan sin
n n n

 
   

 

 
= − − + − 

 
 

 

and the proof is the same as before: this is contradictory with n  in 2 .l   

 

From Proposition 24 follows that T I−  is not invertible, which proves our claim: the spectrum 

is the whole interval  1,1 .−   

 

Proposition 25. – The image of T  is dense in the space ( )2 .l Z   

 

Proof of Proposition 25 

 

Assume on the contrary that the image is not dense: it is contained in an hyperplane. Therefore, 

there exists 0Y   such that for all ,X  , 0.TX Y =  But then by Proposition 23, , 0X TY =  for 

all X , which implies 0TY =  and 0Y = : a contradiction which proves our claim. 
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As an application of this Proposition, let us see how to find a point in ( )Im T  which is close to 

the vector 0e . Let 0   and 
2 1

1

n n

n

X e −



= . Then: 

 

( ) ( ) ( )( )2 2 2
1 0 1 2 2 3 4 4 2 1 2 2

1

1

2 2

n n
n n n n

n

e e
TX e e e e       −

−



+ 
= = + + + + + + + + 

 
   

 

Therefore : 

 

( ) ( ) ( )( )1
0 0 1 2 2 3 4 4 2 1 2 2

1
1

2 2
n n nTX e e e e e


     −

 
− = − + + + + + + + + 

 
 

 

( ) ( ) ( )( )
2

2 2 2 21
0 1 2 3 4 2 1 22

1
1

2 4
n nTX e


     −

 
− = − + + + + + + + + 

 
 

 

We take: 

 

1 2 = − , 
2 2

2


 

 
= − − − 

 
, 3 2 ,

2 3

 
 = − − −  

4 2
2 3 4

  
 

 
= − − − − − 

 
,…,  

( )
1

1 2 ...
2 3 4

n

n
n

   
 

+  
= − − − − − − − 

 
, as long as  

2 ... 0
2 3 4 n

   
− − − − − −  , that is: 

 

1 1
1 2

2 n

 
+ + +  

 
 

 

which means ( )
2

Log n


 , or 0

2
expn n


 = . 

 

Then: 

 
2 2 2

2 2 2 2

0 2 22

1 1 1 1
1 1 2

4 4 16 4 16 4
TX e

n n

  
  

    
− = + + + + + = + + + + +     

   
 

which proves our claim. 

 

The investigation in infinite dimensional settings (namely on the space ( )2l ) does not bring 

any quantitative information on the iterates 
nT , simply because there are no eigenvalues. But 

a similar investigation in the finite dimensional setting will be the key point in our approach 

later. The finite dimensional setting occurs when a barrier is introduced. 
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B. Introducing a barrier 
 

We now investigate the operator theory approach, in the case of a barrier. It is convenient (for 

matrix representation) to change the numbering. The barrier will be set at 0y =  and the 

numbering is made downwards ( 1y =  is just under the barrier, and so on). 

 

1. General coordinates 

 

The operator T  satisfies ( )1 1

1

2
k k kTe e e− += +  ; the barrier implies: 

 

0kTe =  if 0k    

 

( )1 1

1

2
k k kTe e e− += +  if 1k    

 

The matrix of T  in the basis 0 1, ,....e e is: 

 

0 1 / 2 0 0 0

0 0 1 / 2 0 0

0 1 / 2 0 1 / 2 0

0 0 1 / 2 0

0 0 0

T

 
 
 
 =
 
 
 
 

 

 

We also introduce an operator ,B  which describes the action of the barrier: 

 

0 1Be e=  and 0kBe =  if 0k  , where   may be positive (the barrier injects some energy), or 

negative (the barrier absorbs a lot of energy); the case 0 =  happens when the barrier absorbs 

exactly all the energy it receives. 

 

The matrix of B  is: 

 

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

B



 
 
 
 =
 
 
 
 

 

 

And the matrix of T B+  is: 

 

0 1 / 2 0 0 0

0 1 / 2 0 0

0 1 / 2 0 1 / 2 0

0 0 1 / 2 0

0 0 0

T B



 
 
 
 + =
 
 
 
 
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The matrix of ( )
2

T B+  will be: 

 

( )
2

/ 2 0 1 / 4 0 0

0 / 2 1 / 4 0 1 / 4 0

/ 2 0 1 / 2 0

0 1 / 4 0 1 / 2

0 0

T B







 
 

+
 
 + =
 
 
 
 

 

 

which implies:  

 

( )
2

0 0 2
2 2

T B e e e
 

+ = +   

( )
2

1 1 3

1 1

2 4 4
T B e e e

 
+ = + + 

 
 

 

( )
2

2 0 2 4

1 1 1

4 2 4
T B e e e e+ = + +  etc. 

 

We can also introduce a lower barrier, at the coordinate 1,y N= +  so that we have N  positions 

between the upper and the lower barriers. We denote by uB  (upper) the upper barrier and by 

lB  (lower) the lower barrier. 

 

The lower barrier implies: 

 

( )1 1

1

2
k k kTe e e− += +  if 2 k N    

 

1 0NTe + =   

 

The matrix of T  is therefore: 

 

0 0 0

0 1 / 2 0 0

0 1 / 2 0

0 1 / 2 0 0

0 0 0 1 / 2 0

T

 
 
 
 =
 
 
 
 

 

 

The operator lB  describes the action of the lower barrier: 

 

1l N l NB e e+ =  and 0l kB e =  if 1k N + , where l  may be positive (injection of energy), negative 

(absorption of energy), and 0 (case where the barrier absorbs what it receives). 

 

The matrix of lB  is: 

 



34 
BB Simple Random Walks, Part I 

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

l

l

B



 
 
 
 =
 
 
 
 

 

 

and the matrix of lT B+  is: 

 

0 0 0

0 1/ 2 0 0

0 1/ 2 0

0 1 / 2 0

0 0 0 1/ 2 0

l

l

T B



 
 
 
 + =
 
 
 
 

 

 

In the case 3,N =   if we introduce both barriers, with coefficients ,u l   respectively, the matrix 

of u lT B B+ +  is: 

 

0 1 / 2 0 0 0

0 1 / 2 0 0

0 1 / 2 0 1 / 2 0

0 0 1 / 2 0

0 0 0 1 / 2 0

u

u l

l

T B B





 
 
 
 + + =
 
 
 
 

 

 

Let us set B u lT T B B= + + ; we have:  

 

( )

( )

( )

0 1

1 0 2

2 1 3

3 2 4

4 3

1

2

1

2

1

2

B u

B

B

B

B l

T e e

T e e e

T e e e

T e e e

T e e





=

= +

= +

= +

=

  

 

The matrix of 
2

BT  is: 

 

2

/ 2 0 1 / 4 0 0

0 / 2 1 / 4 0 1 / 4 0

/ 2 0 1 / 2 0 / 2 1 / 4

0 1 / 4 0 / 2 1 / 2 0

0 0 1 / 4 0 / 2 1 / 4

u

u

B u l

l

l

T





 





 
 

+
 
 = +
 

+ 
 + 

 

 

If both barriers are annihilating, 0,l u = =  and: 
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2

0 0 1 / 4 0 0

0 1 / 4 0 1 / 4 0

0 0 1 / 2 0 1 / 4

0 1 / 4 0 1 / 2 0

0 0 1 / 4 0 1 / 4

BT

 
 
 
 =
 
 
 
 

 

 

2. The matrix of the operator with new coordinates 

 

Earlier, we defined the distribution of energy ( ),f n k  at time 2 .n  The next step is a distribution 

of energy defined by: 

  

( )
( ) ( ),1 ,2

1,1
2 4

f n f n
f n + = +   and ( )

( ) ( ) ( ), 1 , , 1
1,

4 2 4

f n k f n k f n k
f n k

− +
+ = + +  for 2k  . 

 

So we see that passing from the energy at step 2n  to the energy at step 2 2n+  is the result of 

the action of a linear operator ,U  acting on an infinite dimensional space, namely ( )*

1l N , space 

of absolutely summable sequences. More precisely, if ( )1 2, ,..., ,...nX x x x= , then: 

 

1 2 1 2 3 1 1, ,...., ,...
2 4 4 2 4 4 2 4

n n nx x x x x x x x
UX − + 

= + + + + + 
 

  

 

Such an operator is represented by an infinite matrix: 

 

1 1
0

2 4

1 1 1
0

4 2 4

1 1 1
0

4 2 4

1
0

4

U

 
 
 
 
 

=  
 
 
 
 
 

 

 

The operator U  is positive: if all coefficients in X  are positive, so are all coefficients in .UX  It 

is a contraction : 
1 1

UX X  for all X ; see [BB_op].  

 

Let 
( )
,

n

i jt  be the coefficient of 
nU  at the 

thi  row and 
thj  column. A direct computation of this 

coefficient is not easy. Let us see how to compute it, using the previous paragraph. 

 

If we take ( )0,...,0,1,0,...X = , with 1 at the 
thj  place, the vector 

nU X  will be ( )1, 2, ,, ,..., ,...j j i jt t t . 

This vector is, by definition, the vector of energies on the 2 thn  vertical, 2nW , with numbering 
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starting at 1 near the barrier. So, in the original coordinates, 
1, jt  is at 2 2 − , 

2, jt  at 2 4, −  
,i jt  

at 2 2 .i −   

 

Taking the vector X  as initial energy vector means that we put energy 1 at a point situated at 

2 j  below the barrier. If we take this point as origin, as we did, it means that the barrier is at 

2 2 .j =   

 

So 
,i jt  is the energy received by the point 

2 ,2n kA , with ,k i= −   when the barrier is at 2 ,y j=  

that is, for i n , using Corollary 6: 

 

( )

( ),

22

2 2 22 2

n

i j

nn
t

n j in i 

  
= −   

+ − −+ −   
 

 

When ,i n  the computation is easy: the 1stn +  row of this matrix is made of the sequence 

2

2 2 21
, ,..., ,0,...

0 1 22 n

n n n

n

      
      
      

; the next, that is 2 ,ndn +  is made of the same sequence, shifted 

one step to the right, that is
2

2 2 21
0, , ,..., ,0,...

0 1 22 n

n n n

n

      
      

      
, and so on.  
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