RESULTS

Outbreak in three waves

Hypothetical distribution of cases for the three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that: Hypothesis

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that:

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that:

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that:

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that:

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.

Analysis of potential contamination sources

The analysis of potential contamination sources revealed, for the three waves, that:

• 45% of all BC cases (uniform law) and 58% of all BC cases (lognormal law) have a nonzero probability of having been exposed to the cooling tower,

• 100% of all BC cases (uniform law and lognormal law) have a nonzero probability of having been exposed to aerosols released by the basin surface waters.

DISCUSSION - CONCLUSION

Analyzing epidermic data using probabilistic methods help determine the probability that a potential source contributed with substantial risks. Taking the operation of the installations into consideration, the distribution and probability of exposure help rank the potential sources of the outbreak. The various results of this study demonstrate that the cooling tower could not have been the only potential source of cases. However, the aerated basin may have been directly responsible for the most of the cases of the third wave. The direct implication of this two wave's model is that:

Outbreak in three waves

The distribution of potential contamination sources after consideration of the incubation period revealed three successive waves during the outbreak, and not two as was indicated in the reports.

The figure shows the results using two laws of probability to model the incubation period: a uniform distribution and a truncated lognormal distribution, giving an incubation period of two days at least and ten days at most.