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Abstract 

 

The link between entropy and information, as it is presented for instance in the book by Léon 

Brillouin [Brillouin] is not satisfactory at all. There is a misunderstanding about what is sent 

and what is received. In Wikipedia's article "Entropy (information theory)", the starting sen-

tence "In information theory, entropy is a measure of the uncertainty in a random variable" is 

almost correct (not completely !), but on the French Wikipedia "Entropie de Shannon", the 

starting sentence " L'entropie de Shannon, due à Claude Shannon, est une fonction mathé-

matique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par 

une source d'information" is not correct at all. 

 

For a given sequence, one may define its variance, which is a way of describing the "analytic" 

dispersion of the values, whereas the entropy characterizes the "probabilistic" dispersion. Both 

vary in opposite directions: when the variance is large, the entropy is small, and conversely. 

We introduce a "corrected entropy", which is a simple modification, and now the variations are 

in the same sense. We give comparison estimates between the corrected entropy and the vari-

ance and these estimates are best possible. 

 

We characterize sequences with extremal entropy, given variance, and, using Archimedes 

Weighing Method, sequences of extremal weight, and given entropy. 

 

Acknowledgments: We thank Michel Bénézit for his contributions, which led to significant 

simplifications and strengthening of the results. 
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Let us start with a proper definition: 

 

I. Entropy 
 

Let 1,..., Np p
 
be a discrete probability law ( 0,ip   

1

1
N

i

i

p


 ). We define the entropy of this law 

by the quantity : 

 

 
1

N

i i

i

I p Log p


   

 

This quantity is always positive. It measures the "dispersion" of the law. Indeed, if the law is 

quite concentrated (all 0ip   except one equal to 1), then 0I  . Conversely, if the law has 

maximal dispersion (all 1/ip N ), we have   ,I Log N  and this value is a maximum for ,I  

as we will see later. So we always have the bounds: 

 

 0 I Log N   

 

Remark 

 

One may also define the continuous entropy: from a probability density f , this entropy is de-

fined by the formula: 

 

   ( )cI Log f x f x dx   

 

The continuous entropy has similar properties, but does not reduce to the entropy defined 

above if the density is discretized. The link between both is studied in the book [PIT]. 

 

 

II. Information transfer 
 

It may happen that the numbers ip  are of the form i
i

n
p

N
 , where in  is an integer. This is the 

case for instance if we work on a finite universe (set of balls, of cards, and so on). In this case: 

 

   
1 1

N N
i

i i i

i i

n
I p Log p Log n Log N

N 

 
     

 
   

 

But the quantity : 

 

 2 2

1

N

i i

i

I p Log n
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is the average (since we use the coefficients ip ) of the numbers  2 ,iLog n  which represent the 

number of necessary characters in order to write in  in base 2. We have :  

 

 

 2
2

I Log N
I

Log


  

 

So we may consider ,I  after substracting  Log N  and dividing by  2 ,Log  as an average of 

the number of characters needed in order to write each .in   

 

Let us now study the examples given in Wikipedia's article "Entropie de Shannon" (in French). 

They are very poorly presented. 

 

Assume first that we have a box, containing four types of balls : red, blue, yellow, green. We do 

not know how many balls there are, nor in which proportion. We simply know that only four 

types appear. We draw a ball out of the box, and want to send an information about its colour 

to someone else.  

 

Then, the simplest procedure is to build two binary counters ("binary" means that each coun-

ter indicates 0 or 1) and define for instance : 

 

0,0 = red ; 0,1 = blue ; 1,0 = yellow ; 1,1 = green. 

 

So, what do we send to our correspondent ? First, the above line, which is a description of the 

experiment, and then, each time a ball is drawn, a couple  ,x y  made of 0 and 1 only. From 

this, he will deduce the color of the ball. 

 

What is the entropy ? We do not know, because we do not know what the probability law will 

be, for the colour drawn. But, since we know nothing, we may accept the fact that this proba-

bility law will be the uniform law, meaning that all colours have equal probability. It will be 

defined by  , 1 / 4P x y  , for all , .x y   

 

The entropy associated to this probability law is: 

 

 0

1
2 2

4
I Log Log

 
   

 
 

 

and this entropy will be extreme (that is, maximal), among all situations of the following type : 

we have four types of balls, and we want to send the colour of the ball we extract. 

 

Now, let us take the second example mentioned by Wikipedia : the set of balls contains twice 

as many red balls than blue balls, and twice as many blue than yellow or green, the proportion 

of yellow and green being the same ( 2R BN N , 2 2B Y GN N N  ). 

 

Then we will need three binary counters, and we can define: 
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 (Def)   0 = red ; 10 = blue ; 110 = yellow ; 111 = green. 

 

The entropy associated to this definition is: 

 

         1

1 1 1 1 7
2 4 8 8 2

2 4 8 8 4
I Log Log Log Log Log      

 

which is less than previously. This is completely in accordance to the theory, because now we 

have a specific probability law on the colour which is drawn. 

 

However, this is valid only if the line (Def) has been sent to the receiver ; he should under-

stand that he might receive "0" only (and not 000, which he might expect), and if he receives 

the one-digit 0, he must interpret that as red ; the same, he might receive two digits only, 

namely 10, and should interpret that as blue. Also, he should know that signals such as 001 

are impossible and should be treated as mistakes. 

 

Finally, we observe that, perhaps the entropy is lower, but we need in this second case three 

binary counters instead of two in the previous case. Of course, the two-digits counter works 

perfectly well in the second case. So, the "economy" is in the total number of bites sent, but 

this economy is compensated (which is never clearly said) by a more complex device used in 

order to store the information (three counters instead of two) and a more complex definition 

sentence, allowing many possible impossibilities or mistakes. 

 

In real life situations, and this contradicts completely what is said by Brillouin and by Wik-

ipedia, one never has a complete knowledge of the initial probability law. For instance, if a 

message is transmitted, the transmission line should be able to send messages in English, but 

also in other languages. It should be also able to send images, files, and so on. Therefore, the 

usual discussion about the links between entropy and information have very little practical 

contents. 

 

III. Quantitative study of the entropy 

 

As we saw, the concept of entropy is associated to any sequence 1,..., Np p  of positive real num-

bers with sum equal to 1. We are now going to investigate some basic properties. 

  

A. General extrema 

 

Quite clearly, from the definition, 0I   and this value is attained for any sequence where one 

of the ip   is equal to 1, the others to 0. We are now going to investigate the maximum of .I   

 

Proposition 1. – The maximum of I  is attained for the constant sequence 
1

ip
N

  for all ,i  

and the value of this maximum is  .Log N   
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Proof of Proposition 1 

 

We define the Lagrange multipliers: 

 

 
1 1

1
N N

i i i

i i

F p Log p p
 

 
    

 
   

 

Then: 

 

  1i

i

F
Log p

p



   


 

 

The extrema are either solutions of the system 0
i

F

p





 or on the boundaries of the definition 

domain.  

 

The solution of the system 0
i

F

p





 satisfies   1iLog p    , which means that ip  is inde-

pendent of .i  The condition 
1

1
N

i

i

p


  then implies that 
1

ip
N

   for all .i  The value of the en-

tropy is  I Log N . 

 

Since the function ( )pLog p  is concave (see the graph below), the solutions of the system 

above are maxima, and the points at the boundary are minima. So, with no additional con-

straint, the absolute maximum of the entropy is obtained by the only sequence 
1

ip
N

  for all 

.i  This proves Proposition 1. 

 

 

 
 

Figure 1 : Graph of the function    f p pLog p   

 

Remark. – Proposition 1 follows also immediately from Gibbs Inequality : 

If 1,..., Nq q  is a sequence of positive numbers, with sum 1, 

   
1 1

N N

i i i i

i i

p Log p p Log q
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Indeed, just take 
1

iq
N

   for all .i   

 

B. Extrema with constraints 

 

We now look at the extrema of  
1

N

i i

i

I p Log p


  , assuming 
1

N

i

i

p s


  and the additional con-

straints ip   or .ip   

 

We observe that, in all cases, we may assume 1.s   Indeed: 

 

   
1 1

1N N
i i

i i

i i

p p
Log p Log p Log s

s s s 

 
    

 
   

 

By the above equality, if we set i
i

p
q

s
 , we reduce ourselves to a problem with 

1

1.
N

i

i

q


  So 

we always assume 1s   in the sequel. 

 

1. Looking for a maximum of I   

 

Assume first we have the additional constraint .ip   This implies: 

 

1

1
N

i

i

N p


  , that is 
1

N
    

 

But then the constant sequence 
1

ip
N

  for all i  automatically satisfies the constraint. We 

see, in this case, that the extra constraint ip   is either impossible (if 
1

N
  ) or vacuous (if 

1

N
  ). 

 

Assume now that we have the additional constraint ip  ; the same applies: the solution will 

be the constant sequence 
1

N
 if 

1

N
  or there will be no solution otherwise. 

 

2. Looking for a minimum of I   

 

Assume first that we have the additional constraint .ip   This implies as above: 

 

1

1
N

i

i

N p


  , that is 
1

N
  . 
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The boundaries of the domain are now sequences made only of 0 and ,  except perhaps for 

one term, in order to satisfy the condition 
1

1
N

i

i

p


 . More precisely, let 
1

k


 
   

. The minimal 

sequence will have k  terms equal to , one term equal to 1 k  and the rest equal to 0. 

 

Let us give an example : 100,N   
2

17
  , so 8.k   The sequence giving minimal entropy will 

be : 
2

17
 repeated 8 times, 

1

17
, and 0 repeated 91 times. 

 

Assume now that we have the additional constraint .ip   This implies: 

 

1

1
N

i

i

N p


  , that is 
1

.
N

   The boundaries of the domain are sequences made only of 1 

and ,  except perhaps for one term, in order to satisfy the condition 
1

1
N

i

i

p


 . 

 

So the minimal sequence will be   repeated 1N   times and the last term will be 

 1 1N   . Indeed,  1 1N      since 
1

N
  . 

 

C. Entropy and variance 

 

For a given sequence ip , 1,...,i N  satisfying 
1

1,
N

i

i

p


  we can define the variance of the se-

quence by the formula : 

 

 
2

1

1 1
var

N

i i

i

V p p
N N

 
   

 
  

 

This definition is consistent with the usual definition ; here the average of the 'ip s  is 
1

.
N

 The 

variance is also a way to measure the concentration of the sequence, but of completely differ-

ent nature. We insist that this variance is connected to a sequence, not to a random variable. 

 

The minimum value of the variance is 0 , it is attained when 
1

ip
N

  for all ,i  and we saw 

that in this case the entropy is maximal. 

 

On the other hand, 

 
2

2

2
1

1 1 1 1 1 1 1N

i i i

i

N
V p p p

N N N N N N N

     
           

     
    

 

and the maximum value of the variance is attained when one ip  is equal to 1, all others 0.   

 

In this case, the entropy is minimal. 
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In fact,  

 

– The variance measures the "geometric" dispersion of the values (considered for instance as 

points on a axis) ; 

 

– The entropy measures the "probabilistic" dispersion of the values, that is the concentration 

of a probability law.  

 

Their behavior is opposite : the variance is minimal when the entropy is maximal, and con-

versely. 

 

We observe that a better definition of the entropy might be the "corrected entropy", defined by: 

 

 
1

N

c i i

i

I p Log Np


  

 

Indeed,   ,cI Log N I   so we have  0 cI Log N   ; the corrected entropy has the same 

range of variation. But this time the variation goes in the same sense as the variance: they are 

both extreme at the same places. 

 

 
 

On the picture above, we see both the corrected entropy (in red) and the variance (in green), in 

the one dimensional case (that is 1 2, 1 .p x p x     

 

We now investigate the links between corrected entropy and variance. 

 

Theorem 1. – For any sequence  ip  of length ,N  one has: 

 

cI V  

with: 

 

 
 

1
1

2

N N
Log N

N



 


 

This estimate is best possible. 

 

Proof of Theorem 1 

 

We need a Lemma, which will be fundamental in the sequel. 
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Lemma 2. – Let  ip  be a sequence (with 1ip  ) which realizes the minimum of .cI V  

Then this sequence takes at most two different values. 

 

Proof of Lemma 2 

 

We may of course assume that the ip s  are written in decreasing order, that is : 

 

1 2 0p p    

 

Assume that 
1 2p p . Take 0   small enough and consider the sequence:  

 

1 2 3, , ,..., Np p p p                                                           (1) 

 

Set : 

 

             1 1 2 2

3

2 2 2

1 2

3

1 1 1

N

i i

N

i

f p Log N p p Log N p p Log Np

p p p
N N N N

    


 

      

      
                    




  

 

which represents the quantity cI V  evaluated at the sequence (1). Then, by definition of 

the sequence   ,ip   f   is minimal for 0.    

 

We have : 

 

   2
2 1

1

2
2

p
f Log p p

p N

 
 




    


 

 

which leads to the condition: 

 

 2
2 1

1

2p
Log p p

p N


                                                 (2) 

 

Set 
2

N


    and write 1 2x p p  . We deduce from (2) : 

 

2

1
x

Log x
p


 
  

 
                                                 (3) 

 

A solution in x  to this equation is obtained the following way : one takes the intersection of 

the curve 
2

1
x

y Log
p

 
  

 
  with the straight line y x .  
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We observe that this intersection exists only if the slope of the tangent at 0 to the first curve is 

larger than  , which leads to the condition 
2

1
p


 .  

 

Assume this condition on 2p  to be satisfied ; then, for given 2 ,p  equation (3) has one and only 

one solution in .x   

 

Assume now that the minimal sequence  ip  contains at least 3 different non-zero terms: 

 

1 2 3 4 Np p p p p      

 

Apply the above reasoning to the couples  1 3,p p  and  2 3,p p  : the smallest one is the same 

in both cases, so we deduce that the differences 1 3p p  and 2 3p p  must be the same. This 

shows that 
1 2p p  and proves Lemma 2. 

 

 

We now turn to the proof of the Theorem. We have : 

 

 c i i

i

I p Log Np  

 

Assume, using Lemma 2, that n  of the 'ip s  take the value p  and N n  take the value .q  

Then   1,np N n q    that is 
1 np

q
N n





 and 

1
0 .p

n
   

 

Then, in this case: 

 

   
1

1c

np
I npLog Np np Log N

N n

  
       

 

 

and: 

 

 
2 2

1

1 1 1
var

N

i i

i

n
V p p p

N N N n N

   
       

   
  

 

The proof of the Theorem will be decomposed into several parts. A first remark is that the quo-

tient cI

V
 is quite hard to study directly. Therefore, we find (by empirical means) what the low-

er bound   of the difference cI V  may be, and then we prove that this guess is correct. 

 

Part I : a guess for the bound 

 

We first investigate the case 1n  , which will allow us to obtain a "guess" for the value of  .  

With the above defintions for cI  and ,V  we set: 

 

cD I V   
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and we will compute   so that 
D

p




 vanishes for 

1
1p

N
  . 

 

We have :  

 

 
1 2 2

1 1
1

2 1D
N

g
N

N
N

Lo



   
      

   
  

 

and so the equation 
1

1 0D
N

 
   
 

 is equivalent to: 

 

 
 

1
1

2

N N
Log N

N



 


                                               (1) 

 

We now check that 0D   for 
1

1p
N

  :  

 

     

 

2
1

1
1 1

1 1
2

1 1
1 0

2
1 1 1

2

N
Log N Log N Log N

N N

N
L

D

og N

N N N

N

NN N

     
            



 
    



    








  

 

and we will see later that this leads to a minimum for .D  If this is proved, then ,cI V  

where   is given by (1). 

 

 

Part II : Proof of the Theorem 

 

Now,   has been chosen. We want to prove that for all n  and p , we have 0.D   This will be 

done in several steps. 

 

 

II. 1. – A change of variables 

 

We will make a change of variables, as follows: 

 

We set 
n

t
N

  and x np , so n tN , 
x

p
tN

 , and we have the intervals of variation: 

 

 
1 1N

t
N N


  , 0 1x                                                  (2) 

 

The value 0x   corresponds to 0p   ; since   1np N n q   , this means 
1

q
N n




. So we 

have 0  repeated n  times and 
1

N n
 repeated N n  times. 
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The value 1x   corresponds to 1np  , so 0q  . So we have 
1

n
  repeated n  times and 0  re-

peated N n  times. So we observe that the extreme values  0x   and 1x   are possible.  

 

In order to prove the Theorem, we need to show that, for all x  and t : 

 

 
   

   
 

21
1 0

1

1 1

2 1

x x
x Log x Log x t

t t

N Log N

tN N t


   




 


 

 

We set: 

 

   

 

1 1

2

N Log N

N N


 


  . 

 

and: 

 

 
 

 

2

1
1

1 1

x tx x
y x Log x Log

t t t t



   

 
 

 

considered as a function of x . We have: 

 

 
1

2
1 1

x x x t
y Log Log

t t t t


 
   

 
 

 

   
1 2

1 1
y

x x t t


  

 
 

 

 We first observe that if ,x t  then 0y   and 0y  . We will see that the point x t  is al-

ways a minimum for y  ; however, depending on the value of ,t  it may have another local min-

imum. In fact, three different shapes will be observed, as the following graphs show: 

 

 
 

Graph of y , 10N  , 
1

2
t   
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Graph of y , 10N  , 
1

10
t   

 

 

 
 

Graph of y , 10N  , 
1

9
t   

 

 

II.2. - Study of the sign of y   

 

Lemma 3.- Let Nt  be the unique solution 
1

2
  of the equation: 

 

 
   

 

1 1
1

2 2

N Log N
t t

N N

 
 


 

                                              (3) 

then we have: 

1
Nt

N


 
                                                         (4) 

 

and, if 1N Nt t t   , we have 0y    for all .x   
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Proof of Lemma 3 

 

Let us first prove that 
1

Nt
N
 . Indeed, since 

Nt  is solution of the equation (3), all we have to 

show is that: 

 

   

 

1 11 1
1

2 2

N Log N

N N N N

  
  

 
 

 

which is equivalent to: 

 

 12

2

Log NN

N


  

 

which is true for 3N   and proves our claim. 

 

Let us now prove the second statement. The condition 0y   is equivalent to: 

 

 
 1

1
2

t t
x x




                                                          (5) 

 

The maximum value of  1x x  is 1/ 4 . Therefore, (5) will be satisfied for all x   if 
 1 1

2 4

t t




 , 

or: 

 

 
   

 

1 1
1

2 2

N Log N
t t

N N

 
 


 

 

This is equivalent to 1N Nt t t   , where Nt  is the unique solution 
1

2
  of the equation(3) and 

our Lemma is proved. 

 

A precise value of Nt  is given by the expression: 

 

 

1 1
1 2

2 2
Nt     

 

II. 3. – Proof of the Theorem in the case  1N Nt t t     

 

In this case, we saw that 0y   for all x . So y  is increasing. But: 

 

y   when 0x    

 

0y   when x t   

 

y   when 1x    
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Therefore, the unique solution of 0y    is obtained for x t  ; 0y    if x t  and 0y   if 

x t . The minimum of y  is obtained for x t  and this minimum is 0. So 0y   for all x  and 

the Theorem is proved in this case. This is a simple case where the function y  has only one 

minimum (namely x t ). 

 

We now assume 
1

Nt t
N
   ; the discussion would be the same in the case 

1
1 1 ,Nt t

N
     

since all quantities are invariant under the transformations 1t t   and 1x x  . But first 

we have to study the extreme case 
1

t
N

 . 

 

 

II.4. – Study of the case 
1

t
N

   

 

We have in this case: 

 

   
   

2

1
1

2

1 1

1

N x
y x Log Nx x Log x

N

NLo

N N

g N   
       

   




 

 

Lemma 4. – The function y  vanishes at the points 
1

x
N

  and 
1

1x
N

  . 

 

Proof of Lemma 4 

 

For 
1

x
N

 , this is obvious. Let us take 
1

1x
N

  . Then: 

 

 

     

 

2
1 1 1 1 2

1 1 1
1

1 1 2
1

1

2

1 1

1 1 2
1 0

y Log N Log
N N N N N

N N
Log N Log N Log N

N N N

N N
Log N

N

NLog N

N

N

N

      
                   

 
     

  
  



  
 



 

 

which proves our claim. 

 

Let us study ywhen 
1

t
N

 . We have : 

 

 
   1 2 11

21

NLN x
y Log Nx Log x

N N N

og N   
       

   




 

 

Lemma 5. -The function

 

y takes the value 0  at the points 
1

x
N

 , 
1

2
x   and 

1
1x

N
  .  
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Proof of Lemma 5 

 

For 
1

N
, 

1
1

N
 , the computation is the same as above. For 

1

2
x   : 

 

 
 1/ 2 1 1

/ 2 2 0
221

NLN
y Lo

og N
g Log N

N NN





 
       

    

   

 

which proves Lemma 5. 

 

We now study the variations of .y

  

We know that 0y   if and only if  
 

1 1
1

1
1

2 2

t t N N
x x

 

 
        

 

This happens if and only if 
Nx x  or 1 Nx x  , where 

Nx  is the unique solution 
1

2
  of the 

equation : 

 

 

1 1
1

1
2

N N

N N
x x



 
 

  

 

                                                       (6) 

 

Since: 

 

1 1
1

1 1
1

2

N N

N N 

 
 

     
 

 

 

we see that 
1

Nx
N

  . So we have the ordering: 

 

1 1 1
0 1 1 1

2
N Nx x

N N
       

 
                                 (7) 

 

The function y  is increasing between 0  and Nx , decreasing between Nx  and 1 Nx , increas-

ing between 1 Nx  and 1. 

 
 

  

Using Lemma 5, we see that the sign of y , is as follows: 

 

Between 0  and 
1

N
: 0y    

Between 
1

N
 and 

1

2
 : 0y    

Between 
1

2
 and 

1
1

N
  : 0y    



17 
BB Entropy and Information, 2015/01 

Between 
1

1
N

  and 1 : 0y    

 

Therefore, y  is decreasing between 0  and 
1

N
, increasing between 

1

N
 and 

1

2
, decreasing be-

tween 
1

2
  and 

1
1

N
  and increasing between 

1
1

N
  and 1.  So the minimum is reached at the 

points 
1

N
 and 

1
1

N
   and the value of this minimum is 0. This proves that 0y   for all ,x  

when 
1

1t
N

  . 

 
Graph of y , case 100N   

 
Graph of y , case 100N   
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Graph of y  in a neighborhood of 
1

N
, case 100.N   

This finishes the proof of the Theorem in the case 
1

1 .t
N

    

 

II.5. – Case 
1

Nt t
N
  . 

 

We observe that there is some difference with the case 
1

t
N

 . There will be a second local mi-

nimum (besides x t ), but the value at this second minimum will not be 0.  For instance, let 

us draw the graph when 
1

1
t

N



 : 

 

 
 

Graph of y , case 100N   

The function y  does not vanish between 
1

1
N

  and 1, but still has a minimum in this inter-

val. 

 

We saw that the condition 0y   is equivalent to  
 1

1
2

t t
x x




   and we are in the case 

 1 1

2 4

t t




 . Therefore, 0y   if tx x  and if 1 tx x  , where tx   is the unique solution 1/ 2  

of the equation : 
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 1

1
2

t t
x x




 

 

                                                             (8) 

 

We observe that 
tt x . Indeed, 

tx  is solution of (8), whereas  
 1

1 ,
2

t t
t t




   since 2 1  . 

 

So we have the  disposition:  

 

1
0 .

2
tt x  

 
                                                               (9)

 
 

The proof will follow different patterns, depending on the position of x  in this disposition. 

 

 We have 0y   if 0 tx x  , 0y   for 
tx x , and 0y    if 1t tx x x   . 

 

Therefore, y  is increasing if 0 tx x  , decreasing if 1t tx x x  
 

and increasing if 

1 1.tx x     

 

At the point 0, y  has limit   and y  vanishes at x t  ; therefore 0y   if 0 x t  . So y  is 

decreasing on this interval.  

 

Also, y  is increasing between t  and 
tx  and therefore is positive, since y  vanishes at .x t  

Therefore, y  is increasing between t  and tx . 

 

Case II.5.1. -  0 tx x 
   

 

So, if 0 tx x  , things are clear: the function y  is first decreasing, then increasing ; it 

reaches its minimum at x t  and this minimum is  0 ; so we have proved that 0y   on this 

interval. 

 

Case II.5.2. -  
1

2
tx x   

 

On the interval 1tx x  , y  is first decreasing (if 1t tx x x   ), reaches its minimum at 

1 tx , then is increasing if 1 1tx x   .  

 

We know that   0ty x   and that the limit of y  at   is  , but this does not allow us to 

reach any conclusion on the sign of y  : if  1 0ty x   , y  does not vanish, so it is always 

0,  y  is always increasing and the problem is solved. However, if  1 0ty x   , y  will va-

nish twice, will be positive first, then negative, then positive ; y  will be first increasing, then 

decreasing, then increasing, and there will be a local minimum of y  between tx  and 1. 

 

We will first show that 0y   when 
1

2
x  . 
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We have: 

 

 
     

1
1 1 1 1 221/ 2 2
2 2 1 1 1

t
t t

y Log Log Log
t t t t t t t

 
    

       
     

 

 

with 
1

Nt t
N
  . 

 

We set: 

 

 
1 1 2

1

t t
A Log

t t t


 
 


 

 

and we have:  

 

   

   
 

22

2 22 2

1 2 2 11 2 2 1

1 1 1

t t t tt t
A

t t t t t t




       
    

  
 

 

which has the same sign as:  

 

       2 21 2 2 1 1 2 1 2B t t t t t t                

 

This is a quadratic function, which reaches its absolute minimum at 
1

2
t   and so it is decrea-

sing for 
1

2
t  . Since Nt t , the minimum is obtained for Nt t  ; its value is: 

 

      2 21 2 1 2 1 2N N N NC t t t t              

 

But, by definition,  1
2

N Nt t


  . So: 

 

  2 1
1 2 0

2 2 2
C

 
    

 
          

 
 

 

This shows that 0B  , so that 0A   for all t ; therefore A  is increasing. The smallest value 

is obtained at 
1

t
N

  : 

 

 
 2

1 0
1

N N
A Log N

N



   


 

 

which proves that 0A  if  
1

Nt t
N
  , when 

1

2
x    

 

We will now show that 0y   on the interval 1/ 2.t x   Let x  be in this interval. We have: 
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1

2
1 1

x t x t
y Log

x t t t


 
  

 
 

 

We set: 

 

 
1

2
1 1

x t x t
A Log

x t t t


 
 

 
 

 

considered as a function of t . 

 

We have:  

 

   

   
 

22

2 22 2

1 2 21 2
2

1 1 1

t t t xt xt xt x
A

t t t t t t




       
    

  
 

 

which has same sign as: 

 

       2 21 2 2 1 2 1 4 2B t t t xt x t t x x                

 

But, considered as a function of ,x  this last quantity is decreasing, therefore takes its mini-

mum for 1/ 2x   ; we are back to the previous case, and we have shown that 0,B   so that 

0A  , and therefore that A  is increasing as a function of ,t  for fixed .x  

 

Since 0A   if t x , we have 0A  if 
1

,
2

t x   which shows that 0y   on this interval. This 

implies that, as a function of ,x  y  is increasing if  
1

2
t x  . Since 0y   if ,x t  we have 

0y   if 
1

2
t x   and the Theorem is proved on the interval 

1
0 .

2
x    

 

Case II.5.3. -    
1

1
2

x   

 

In the quantity: 

 

 
 

 

2

1
1

1

x tx x
y xLog x Log

t t t x t


   
      

    
 

 

we fix x  and consider y  as a function of .t  We have: 

 

   

 

       

 
2 22 2

2 1 21

1 1 1

x t xt t x t x t t x t xt t xy x x

t t t t t t t




          
   

   
 

 

Since 0x t  , this quantity has same sign as: 

 

     21 2 2A t t x t xt t x t tx t t x                
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We will show that 0A  for all x  and all t . We consider A  as a function of .x  We have: 

 

 2 1 2 0
A

t t
x

  


     


 

 

So A  is an increasing function of x  and the minimum is obtained for x  minimum, which is 

1

2
x   . For this value, we have: 

 

2

min
2

A t t


    

 

and: 

 

min 2 1 0
A

t
t


  


 

 

So minA  is a decreasing function of t  and the minimum of minA  is obtained for t  maximal, that 

is for Nt t . But Nt  is defined by the equation  1
2

N Nt t


   and therefore min 0A  , which 

proves that 0.A   

 

This implies that y  is an increasing function of t , so the minimum of y  is obtained for t  as 

small as possible, that is for .Nt t  But, for this value of ,t  we know that 0y   for all x  and 

the Theorem is proved. 

 

The fact that the estimate in Theorem 1 is best possible follows from the proof. Indeed,   was 

chosen by reference to the case 1n  , 
1

1p
N

  , which corresponds to the sequence : 

 

 1 2

1 1
1 , ...

1
Np p p

N N N
    


 

 

Direct computations show that, in this case: 

 

 
2

1c

N
I Log N

N


   

 
2

1 2

1

N
V

N N

 
  

  
 

 

and: 

 

.cI

V
  

 

We now turn to converse estimates, relating cI  and the variance. We have: 
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Theorem 6. – For any sequence  ip of length ,N  we have: 

 
2

cI N V  

 

and this estimate is best possible. 

 

Proof of Theorem 6 

 

We know that, for any 0,x   

 

  1Log x x   

 

Therefore: 

 

 
1

1i i iLog Np Np N p
N

 
    

 
 

 

2

2

1

1 1 1

1 1

1

i i i i

i i

i i

i

p Log Np N p p
N

N p p
N N N

N p p
N N

N p
N

 
  

 

  
     

  

   
      

   

 
  

 

 



 



 

 

which proves the Theorem. 

 

We observe that the constant 
2N  in Theorem 6 is best possible, as the following example 

shows : 

 

1n   
1 2

1
p

N
 , 

2 2

1 1
.... Np p

N N
    . Then: 

 

2cI
N

V
  when .N   

 

We deduce from the previous Theorems : 

 

Corollary 7. – For the entropy ,I  we have the following bounds, which are best possible: 

 

   
   2 1 1

2
Log N V I Log N V

N N Log N
N

N
   

 


 

 

 

The following Corollary was communicated to us by Michel Bénézit : 
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Corollary 8. – We have, for any sequence of length N : 

 

    2 1 1 NLog N I VN N     
 

 

 with : 

 

     

  2

1 1 1

1 2
N

Log N N Log N

N N N N


 
  

 
 

 

Proof of Corollary 8 

 

The left hand-side inequality is clear. For the right one, we have, from Corollary 7: 

 

 
   2 2 1 1

2

N N Log N
I V Log N NN

N
V

  
    

 
 

 

and we use the upper estimate seen previously : 

 

2

1N
V

N


  

 

The result follows. 

 

D. Sequences with fixed variance 

 

We now return to the usual definition of entropy and investigate other quantitative connec-

tions with the variance. Let us fix  var iV p    for some 0.   We want to investigate the 

sequences satisfying this property, with largest entropy. 

 

We now give a characterization of the extremal sequences. Since they take only two values, let 

us set : 

 

,ip p  1,...,i n   

 

,ip q  1,...,i n N    

 

for some ,n  2 1n N   . We may of course assume .p q   

 

Proposition 1. – For the extremal sequences, the numbers ,p q  must satisfy: 

 

 1 1
,

N n n
p q

N n N N n

 
   


 

 

 

Proof of Proposition 1 

 

We have: 
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( ) 1np N n q    

 

which gives: 

 

1 np
q

N n





                                                                 (1) 

 

By the definition of the variance, we have : 

 
2 2

1 1n N n
p q

N N N N


   
      

   
                                             (2) 

 

Replacing the value of q  given by (1), we get: 

 
2 2

1 1 1n N n np
p

N N N N n N


    
      

   
 

 

which gives after simplification: 

 

 
2

1 N n
p

N n

  
  

 
 

 

and the value of q  follows from (1). This proves Proposition 1. 

 

We observe that the value   assigned to the variance is bound by some conditions. Indeed, we 

must have 0,p   which means: 

 

  1N n

n N

 
  

 

or: 

 

2

1n

N n N
 


 

 

This must hold for any 1,..., 1n N  ; the quantity 
n

N n
 is increasing with n , so the mini-

mum is reached for 1.n   This gives the estimate: 

 

 2

1

1N N
 


 

 

Finally, since an extremal sequence is made of n  times p  and N n  times q , its entropy is: 

 

   ( )I npLog p N n qLog q    

 

We may consider separately both terms, and set: 
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1

1 1N n N n
I npLog p n Log

N n N n

     
      

   
   

 

 

and: 

 

     2

1 1n n
I N n qLog q N n Log

N N n N N n

    
        

    
 

 

Then 1I  is obviously decreasing with k  and 2I  is obviously increasing. The global behavior of 

1 2I I I   is not clear. On the numerical examples we treated, it was almost constant, decreas-

ing slightly. This would mean that the sequences with lowest entropy might be of the type 

 ,..., ,p p q  and the sequences with highest entropy might be of the type  , ,...,p q q . 

 

E. Sequences with low entropy 

 

We saw that, in general: 

 

 0 I Log N   

 

We are going to investigate the sequences  ip  such that : 

 

 I Log N                                                              (1) 

 

for a given 1.   Such a sequence will be called "of   low entropy". 

 

First, we observe that condition (1) can be written in an equivalent form: 

 

       
1 1

N N

i i i

i i

p Log p Log N Log N p Log N 
 

      

 

that is: 

 

 
1

0
N

i i

i

p Log N p



                                                           (2) 

  

Condition (2) implies: 

 

 max 0i iLog N p   

  

that is: 

 

1
maxi ip

N
                                                               (3) 
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So we see that condition (3) is necessary for the sequence to have low entropy. It means that 

one at least among the 'ip s  must be large. In fact, a condition to have low entropy is precisely 

that the sequence should not be too concentrated near its average. The following Proposition 

characterizes this. It was communicated to us by Michel Bénézit, and is a strengthening of our 

original result: 

 

Proposition 1. (Michel Bénézit) – Let   and ,  0 1,   0 1   be given. Let: 

  

 
   

2

1 1t Log t t
g t

t

  
  for 1t    

and  1 .g N     

 

A sequence  ip  satisfying 
ip 

 
for all i and 

 
2

1 Log N
V

N






  has   low entropy.  

 

Proof of Proposition 1 

 

First, we observe that the function g  is decreasing. Therefore, for all i : 

 

 
 

 
2

1
1

1

i i i

i

i

Np Log Np Np
g Np

Np


 
  


 

 

From which we deduce, after simplification: 

 

   
2

1iNp NLog N NI     

 

that is: 

 

 2N V Log N I    

 

from which Proposition 1 follows immediately. 

 

The next Proposition studies the reverse implication : a sequence with low entropy must have 

a large variance. 

 

Proposition 3. – If a sequence has   low entropy, its variance satisfies: 

 

   
2

1 Log N
V

N


  

 

Proof of Proposition 3 

 

We will use the inequality, valid for all 1t    

 

    21 1t Log t t t                                                       (1) 

 

This inequality follows from  1Log t t  , if 1.t     
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Now, the condition : 

 

       
1

1
1 1 1

N

i i

i

t Log t Log N
N




                                             (2) 

 

implies using (1): 

 

     2

1

1
1

N

i i

i

t t Log N
N




    

 

and since 
1

0
N

i

i

t


 , we get: 

 

   2

1

1
1

N

i

i

t Log N
N




   

 

which is equivalent, by the same computations as before, to: 

 

   
2

1 Log N
V

N


  

 

which proves Proposition 3. 

 

 

F. Sequences with fixed entropy 

 

In this section, we study the sequences  ip
 
with fixed entropy : let   0 1  , such that: 

 

 I Log N . 

 

This means: 

 

 
1

0
N

i i

i

p Log N p



                                                        (1) 

 

The arguments which follow are inspired by Archimedes' Weighing Method (see [AMW]). 

 

Condition (1) may be written: 

 

   
1/ 1/i i

i i

p N p

i

N

ip Log N p p Log N p
 

 

 

                                        (2) 

 

The quantity  apLog N p  may be viewed as the moment of a weight  aLog N p , put at the 

position ,p  with respect to the origin, and similarly for the quantity  ,apLog N p  put at the 
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place p  ; so condition (2) states that these weights must be in equilibrium with respect to the 

origin. 

 

For this weighing procedure, on the left of ,O  the graph is  Log N x  and on the right 

 Log N x
 ; the black bar on the left, figure below, is at position p  and its height is 

 Log N p
 and the black bar on the right is as position p  ; the collection of bars left of the 

origin should be in equilibrium with the collection of bars right of the origin. 

 

 
 

Figure 2: the weighing procedure 

 

 

In condition (2) both terms are positive. We set: 

 

 1

1/i

i i

p N

I p Log N p






     

 

1

1/i

i

p N

s p


    

 

and: 

 

 2

1/i

i i

p N

I p Log N p






   

 

2

1/i

i

p N

s p


   

 

We want to find the maximum value of 1I  for fixed 1s .  

 

As we already saw, we can solve this problem assuming 1 1.s   The maximum value of 1I  is 

obtained when all coefficients are equal. 

 

Let k  be the number of ip  such that 
1

ip
N

 . Then the maximum value of 1I  is reached for: 
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1
1 ... k

s
p p

k
   . 

 

We now turn to the term 2.I  

 

 2

1/i

i i

p N

I p Log N p






   

 

which is the opposite of an entropy. The same way, the maximum value of 2I  will be obtained 

for the minimum value of: 

 

 2

1/i

i i

p N

I p Log p


     

 

under the constraints 2ip s  and 
1

ip
N

 . Then, as we saw earlier, the minimum of the 

entropy is obtained when we assign the value   to 1N   of the ip  ; the last one satisfies: 

 

 1 1Np N      by (1). 

 

So we see that the maximum value of 2I  is obtained in general for the following configuration: 

all 
1

ip
N

  except perhaps one which is larger. 

 

In short, the sequences with maximal terms 1I  and 2I  are made of 3 terms only: one common 

value for all 
1

ip
N

 , one common value, namely 
1

N 
 for all terms 

1

N 
  and possibly one 

term 
1

.
N

   

 

 

 

References 

 

[AMW] Bernard Beauzamy : Archimedes' Modern Works. SCM SA, ISBN 978-2-9521458-7-9, 

ISSN 1767-1175. August 2012. 

 

[Brilloin] Léon Brillouin La science et la théorie de l'information, 1959, réédité par les Edi-

tions Jacques Gabay, Paris. 

 

[PIT] Olga Zeydina and Bernard Beauzamy : Probabilistic Information Transfer. SCM SA. 

ISBN: 978-2-9521458-6-2, ISSN : 1767-1175. 208 p., May 2013. 


