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I. Introduction 

 

The occurrence of extreme events (high temperatures, high waves, strong earthquakes, and so 

on) has become an increasingly important social concern. This is rather easy to understand: 

our societies have now more than a hundred years of data, for many phenomena, which is 

enough to establish tables for the ordinary ones, but not enough for the rare ones. Since 

moreover there is an increasing social concern about "risks" in general, research tends to 

concentrate now on rare situations. 

 

So far, extreme phenomena have been treated by means of specific and empirical probability 

law, such as Gumbel, the merit of which is that they depend on very few parameters, and so 

are easy to tune in cases where data are scarce. But such law have no real value ; they are 

only of academic merit. They do not describe any real world situation. 

 

In 2009, in the framework of contracts with the "Caisse Centrale de Réassurance" (Paris), we 

developed probabilistic methods in order to estimate the probability of extreme events. These 

methods : 

 

– Make full use of all existing records ; 

 

– Make no fictitious assumption at all. There is no "parametric law" behind the 

construction, the only assumption being that, the more extreme the phenomenon is, the 

smaller its probability will be. 

 

However, using this method, computations on real life situations were quite hard to perform, 

since they required complicated multiple integrals. 
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In 2010, a new approach, based upon a Monte-Carlo type method, was proposed by Peter 

Robinson [3] ; this method works well if the number of records and the number of classes is  

not too high. But, in high-dimensional spaces, Monte-Carlo methods do not perform in a 

satisfactory manner : see our book [4] for a description of this fact. 

 

Here, we present a new approach allowing explicit and fast computation of the integrals which 

are the basis of our method. This approach does not rely upon any Monte-Carlo procedure ; it 

is completely explicit and deterministic. 

 

II. General presentation of the problem 

 

Let us describe it on a specific example, namely the temperatures in Paris. We start with a list 

of records, which may be of the following form: 

 

temp nb of days temp nb of days 

35 9 38 1 

35,2 7 38,2 1 

35,4 8 38,4 1 

35,6 11 38,6 2 

35,8 6 38,8 0 

36 3 39 0 

36,2 7 39,2 0 

36,4 6 39,4 3 

36,6 6 39,6 0 

36,8 4 39,8 0 

37 3 40 0 

37,2 4 40,2 0 

37,4 1 40,4 1 

37,6 2 40,6 0 

37,8 2 40,8 0 

  
41 0 

 

Table 1: data for extreme temperatures 

 

In this case, we consider the temperature as "extreme" if it is above 35°C ; the second column 

is the number of occurrences of the phenomenon, namely the number of days where the given 

temperature was observed (during the total observation period, which is here 140 years).  

 

For each temperature k  (between 35°C and 41°C), we want to have an estimate of the 

probability kp  of this temperature; the discretization is made here in steps of 0.2°C. This 

estimate is given under the form of random variables kZ  and kp  is the expectation of kZ . In 

other words, take for instance the value 40°C. The random variable 40Z   describes the possible 

values for the probability and the chosen value 40p  is the average of these possible values, 

that is the expectation of the random variable.  
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Let kn  be the number of occurrences of the k   th value: they are the values of the right 

column in the table above. For instance, 40 0n  . Let K   be the total number of classes, here 

31K  . 

 

We need to have a consistent set of probabilities, namely 1k

k

p  .   

The theory developed in [1]  indicates that the joint law of our set  1,..., KZ Z  will be given by : 

 

  1

1 1 1( ,..., ) 1 ,..., Kn n

K S K Kf c       

 

where: 

 

 

− 1S  is the indicator function of the set  : 

 

1 1

1

( ,..., ) ; 0, 1
K

K K k

k

S     


 
     
 

 , 

 

that is the function which is 1 inside this set and 0 outside ; 

 

− c  is a normalization constant : the multiple integral of 1( ,..., )Kf    should be 1. 

 

The marginal law for each kZ  has density : 

 

1 1 1 1 1 1( ) ... ( ,..., , , ,..., ) ... ...k k k K k k K

S

f f d d d d                

 

and the assigned value for each kp  will be the expectation : 

 
1

0

( )k kp f d     

 

So, we want to compute the integral of a monomial : 

 

1

1 1( ,..., ) Kn n

K KM x x x x  

 

on the simplex .S   

 

We introduce new variables : 

 

K Ky x  

 

1k k ky x x     1,..., 1.k K   

 

So 0ky  , 1,..., .k K  
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Conversely, the kx 's can be computed from the ky 's : 

 

K Kx y  

 

1k k k Kx y y y    , 1,...,k K . 

 

So the Jacobian of the transformation from the kx 's to the ky 's is 1. 

 

The condition 
1

1
K

k

k

x


  becomes : 

 

1 1 1K K K K k Ky y y y y y y            

 

that is : 

 

1 1( 1) 1K K kKy K y ky y       . 

 

With these new variables, the monomial M  becomes : 

 

 
1

1

1

,...,

k Kn n n
K K K

K j j j

j j k j K

P y y y y y
  

     
      
     
    

 

We have to integrate the polynomial 1( ,..., )KP y y  on the simplex : 

 

 1 1

1

,..., ; 0, 1
K

K k k

k

S y y y ky


 
   
 

  

 

Let us make one more change of variables. We set : 

 

k kz ky , 1,...,k K  

 

Then the Jacobian of this transformation is  !K  

 

The polynomial 1( ,..., )KP y y  becomes : 

 

 
1

1

1

,...,

k Kn n n
K K K

j j j

K

j j k j K

z z z
Q z z

j j j  

     
      
     
    

 

and the set of integration is : 
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 2 1

1

,..., ; 0, 1
K

K k k

k

S z z z z


 
   
 

  

The integral we want is : 

 

1

2

1

1

1
...

!

k Kn n n
K K K

j j j

K

j j k j K

S

z z z
I dz dz

K j j j  

     
      

     




  

 

                       (1)

 

 

and we recall from [BB1], Chapter 14, §9 that : 

 

 
1

2

1
1 1

!... !

1 !
Kn n K

K K

S

n n
z z dz dz

N K


 
 

                                          (2) 

 

with 1 KN n n   . 

 

III. An induction formula 

 

We now show how to compute the integral (1) by induction. 

 

We write: 

 

1 1 1 1
1

1

1

1

1 1

1 2 0 21

n n n m
nK K K

j j jm

j j m j

nz z z
z z

mj j j



   

      
        

      
     

 

So: 

 

 
1 2 1 3

1

1

1

1

1 1

0 2 31

,...,

k Kn n m n n n
n K K K K

j j j jm

K

m j j j k j K

n z z z z
Q z z z

m j j j j

 

    

        
         

         
                     (3) 

 

That is: 

 

 
1

1

1

1

1 1 2

0 1

,...,
n

m

K

m

n
Q z z z Q

m

 
  

 


 

with: 

 

 
1 2 1 3

2 2 1

2 3

,..., ;

k Kn n m n n n
K K K K

j j j j

K

j j j k j K

z z z z
Q z z m

j j j j

 

   

       
        
       
     

 

Similarly: 
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1 1 2 1 2 1 1 2 1 2
21 2 1

2

1 2 12 2

2 3 0 322 2

n m n n n m n n m mmn n mK K K
j j j

j j m j

n n mz z zz z

mj j j

      
 

   

        
         

       
   

 

  

 

which gives: 

 

1 2 3 1 2 4
21 2 1

2

1 2 1 2
2

0 3 42 2

k Kn n n m m n n nmn n m K K K K
j j j j

m j j j k j K

n n m z z z zz
Q

m j j j j

   
 

    

           
          

          
      

 

Set 1k kn n    , 1k km m     ; repeating the procedure, we get: 

 

21 2 1

2

1 2 1 2
2 3

0 2 2

mn n m

m

n n m z
Q Q

m

 



   
   

  


 

 

with: 

 

 
3 2 4

3 3 1 2

3 4

,..., ; ,

k Kn n n
K K K K

j j j j

K

j j j k j K

z z z z
Q z z m m

j j j j

 

   

       
        
       
     

 

More generally: 

 

2 11 21 2 1

1

1 2 1

1 21 2 1 2 1
1

0 01 2 1

...
2 1

kk k

k

m mn
k km k

k

m m m k

z z
Q z Q

m m m k

        




  

  

        
        

        
    

 

with: 

 

 
1 1

1 1

1

,..., ; ,...,

k k k Km n n
K K K

j j j

k k k k

j k j k j K

z z z
Q z z m m

j j j

  



   

     
      
     
     

 

1 2

1
1

1

K K Kn

K K K
K

z z z
Q

K K K

  




   
    

   
  

 

which gives: 

 

11 2

1

1 2 1
1

1 1

KK K

K

m

K K K
K K

m K

z
Q Q

m K

     




  





  
   

  
   

 

with: 

 

 
1

1 1; ,...,
K K

K
K K K

z
Q z m m

K
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Since all coefficients are positive, there is no cancellation, and each polynomial gives its own 

contribution. We denote by jEQ  the contribution of the j   th polynomial. We get : 

 

 
 

1

1

1 1

!
,...,

K K

K K

K KEQ m m
K 

 




 




 
 

We observe that this quantity depens on 1 1 1K Km m      only : this will be useful for 

practical computations. 

 

Also: 

 

 
 

 
1 2

1

1

1 2 1
1 2 1

0 1

!

1

K K

K

K

K K K
K K K Km

m K

m
EQ EQ

m K

   
 

 






  

  

 

 
  

 
  

 

More generally, 

 

 
 

 
1 2

1

1

1 2 1
1 2 1

0 1

!

1

k k

k

k

k k k
k k k km

m k

m
EQ EQ

m k

   
 

 






  

  

 

 
  

 
  

 

and: 

 

 
1

1

1

1 1
1 2 1

0 1

!

1

n

m
m

m
EQ EQ EQ

m






 
   

 
  

 

Finally, by formulas (1) and (2), we get: 

 

 1 !!N K

EQ
I

K 
  

 

We can write the explicit estimate: 

 

 

11 2 1

1 2

1 2

1 2

1 1

1

11 2 11 2

0 0 01 2

1 2 1 1

0 1

! ! !
...

1

! 1 ! 1 2

! ( )!

( 1)

k k

k

k

K K

K K K

K

n m
k k k

mm m
m m m k

K K K K K

m
m K

n mm m
I

K

m

m m m k

m

m K K

N K

 

 

 

 

   



 

 






  


   


 

     
    

     

  
  







 
  



  

 

 

 

 

 



8 
BB Explicit computation for extreme events, 2012/10 

IV. A first example 

 

We treat the situation of temperatures, taken from [1]. The data are given in the table 1 

above.  

 

Here are the results of the evaluation: 

 

temperature nb of days 

corrected 
proba temperature nb of days 

corrected 
proba 

35 9 0,118 38 1 0,020 

35,2 7 0,097 38,2 1 0,018 

35,4 8 0,087 38,4 1 0,016 

35,6 11 0,079 38,6 2 0,015 

35,8 6 0,069 38,8 0 0,013 

36 3 0,062 39 0 0,011 

36,2 7 0,057 39,2 0 0,010 

36,4 6 0,052 39,4 3 0,009 

36,6 6 0,047 39,6 0 0,008 

36,8 4 0,042 39,8 0 0,006 

37 3 0,037 40 0 0,005 

37,2 4 0,033 40,2 0 0,004 

37,4 1 0,029 40,4 1 0,003 

37,6 2 0,026 40,6 0 0,002 

37,8 2 0,023 40,8 0 0,002 

      41 0 0,001 

 

Table 2: results of the evaluation 

 

Here are the two sets of data on the same graph. In red, the "rough" probability, estimated 

simply from the number of occurrences. In blue, the data corrected using our method. The x   

axis represents the temperature and the y  axis the probability of that temperature. 

 

 
 

Figure 3: graph of corrected values 

0,0000

0,0200

0,0400

0,0600

0,0800

0,1000

0,1200

0,1400

3
5

3
5

,4

3
5

,8

3
6

,2

3
6

,6 3
7

3
7

,4

3
7

,8

3
8

,2

3
8

,6 3
9

3
9

,4

3
9

,8

4
0

,2

p
ro

b
ab

ili
ty

 

temperature 

corrected

rough



9 
BB Explicit computation for extreme events, 2012/10 

V. A new example 

 

We treat here the situation of 3 classes, with the numbers 1 2 319, 19, 1n n n   . This situation 

arises naturally, in the following context : some accident may occur with extremely small 

probability. If it occurs, we consider the costs of the accident, and we have the following costs : 

 

0.1cst   U with probability 0.975   

0.4cst   U with probability 0.500  

1cst   U with probability 0.025  

 

The maximal cost is 1.9  U. The letter U indicates the unit of cost, whatever it may be. 

 

So we have three intervals : 

 

Interval of cost Probability 

0.1-0.4 0.475 

0.4-1 0.475 

1-1.9 0.025 

 

Table 4: the data with three intervals 

 

The total probability is not 1, since there is a 0.025 probability that the cost may be 0.1 . 

 

If we restrict ourselves to the situation of extreme accidents, that is of costs 0.1 , we have the 

following table :  

 

Interval of cost Probability 

0.1-0.4 19/39 

0.4-1 19/39 

1-1.9 1/39 

 

Table 5: the extreme accidents 

 

In order to describe this situation, we assume that a total of 39 accidents occurred, with 19 in 

the first interval, 19 in the second and 1 in the third. 

 

We take 0.3 as the step of subdivision. So the first interval contains just one class, the second 

contains two classes, namely 0.4 0.7  and 0.7 1  and the third contains three classes, namely 

1 1.3 , 1.3 1.6 , 1.6 1.9.  So, altogether, we now have 6 classes of equal width; we want to 

estimate the probabilities 1 6,...,p p  of these classes. These probabilities are evaluations of 

random variables 1 6,...,Z Z  satisfying, for the previous paragraph : 

 

1 2 6Z Z Z     

 

1 6 1Z Z     
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From the table above, we can assume the following number of accidents in each class: 

 

class number of accidents 

1 57 

2 28 

3 29 

5 1 

6 1 

7 1 

 

Table 6: the number of accidents per class 

 

Indeed, we have three classes in the last interval, and if 39 accidents occur, only 1 is in this 

interval. So we have to assume that 39 3 117   accidents occur, with 1 in each class of the 

final interval. The 57 accidents of the original second class are put evenly into the two new 

classes 2 and 3. 

 

Here are the results: 

 

class 
number of 

accidents 
estimated 
probability 

cost 

1 57 0,472 0,1-0,4 

2 28 0,263 0,4-0,7 

3 29 0,216 0,7-1 

4 1 0,026 1-1,3 

5 1 0,015 1,3-1,6 

6 1 0,008 1,6-1,9 

 

Table 7 : the estimated probabilities and costs 

 

 
 

Figure 8: the corresponding graph 
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