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I. Introduction

The occurrence of extreme events (high temperatures, high waves, strong earthquakes, and so
on) has become an increasingly important social concern. This is rather easy to understand:
our societies have now more than a hundred years of data, for many phenomena, which is
enough to establish tables for the ordinary ones, but not enough for the rare ones. Since
moreover there is an increasing social concern about "risks" in general, research tends to
concentrate now on rare situations.

So far, extreme phenomena have been treated by means of specific and empirical probability
law, such as Gumbel, the merit of which is that they depend on very few parameters, and so
are easy to tune in cases where data are scarce. But such law have no real value ; they are
only of academic merit. They do not describe any real world situation.

In 2009, in the framework of contracts with the "Caisse Centrale de Réassurance" (Paris), we
developed probabilistic methods in order to estimate the probability of extreme events. These
methods :

— Make full use of all existing records ;

- Make no fictitious assumption at all. There is no "parametric law" behind the
construction, the only assumption being that, the more extreme the phenomenon is, the
smaller its probability will be.

However, using this method, computations on real life situations were quite hard to perform,
since they required complicated multiple integrals.
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In 2010, a new approach, based upon a Monte-Carlo type method, was proposed by Peter
Robinson [3] ; this method works well if the number of records and the number of classes is
not too high. But, in high-dimensional spaces, Monte-Carlo methods do not perform in a
satisfactory manner : see our book [4] for a description of this fact.

Here, we present a new approach allowing explicit and fast computation of the integrals which
are the basis of our method. This approach does not rely upon any Monte-Carlo procedure ; it
is completely explicit and deterministic.

II. General presentation of the problem

Let us describe it on a specific example, namely the temperatures in Paris. We start with a list
of records, which may be of the following form:

temp | nb of days temp | nb of days
35 9 38 1
35,2 7 38,2 1
35,4 8 38,4 1
35,6 11 38,6 2
35,8 6 38,8 0
36 3 39 0
36,2 7 39,2 0
36,4 6 39,4 3
36,6 6 39,6 0
36,8 4 39,8 0
37 3 40 0
37,2 4 40,2 0
37,4 1 40,4 1
37,6 2 40,6 0
37,8 2 40,8 0
41 0

Table 1: data for extreme temperatures

In this case, we consider the temperature as "extreme" if it is above 35°C ; the second column
1s the number of occurrences of the phenomenon, namely the number of days where the given
temperature was observed (during the total observation period, which is here 140 years).

For each temperature 4, (between 35°C and 41°C), we want to have an estimate of the
probability p, of this temperature; the discretization is made here in steps of 0.2°C. This
estimate is given under the form of random variables Z, and p, is the expectation of Z,. In
other words, take for instance the value 40°C. The random variable Z,, describes the possible
values for the probability and the chosen value p,, is the average of these possible values,

that is the expectation of the random variable.

BB Explicit computation for extreme events, 2012/10



Let n, be the number of occurrences of the k— th value: they are the values of the right

column in the table above. For instance, N, =0. Let K be the total number of classes, here
K=31.

We need to have a consistent set of probabilities, namely Z p, =1.
k

The theory developed in [1] indicates that the joint law of our set (Zl, ey ZK) will be given by :

(2 A) = €15 (s A ) A™ - A

where:

— 1 is the indicator function of the set :

3={(/11,...,AK); A=A zo,iﬂk =1},

that is the function which is 1 inside this set and 0 outside ;

— C is a normalization constant : the multiple integral of f(4,,...,4,) should be 1.

The marginal law for each Z, has density :

B =] [ TG A A A )B4 A A o d Ay

and the assigned value for each p, will be the expectation :
1
p = [ A (1)d2
0

So, we want to compute the integral of a monomial :
M (X, ey X ) = X X
on the simplex S.

We introduce new variables :
Y =Xk

Y. =% — X, k=1..,K-1
Soy, >0, k=1..,K.
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Conversely, the X,'s can be computed from the Y, 's
X¢ = Yk
X =Y+ Vg Tt Ve k=1..K.

So the Jacobian of the transformation from the X, 's to the y, 'sis 1.

K
The condition ZXk =1 becomes :
k=1

yK +yK +yK71+...+yK+...+yk+...+yK+...+yl=
that is :
Ky +(K=Dy, s+ +ky, +-+y, =

With these new variables, the monomial M becomes :

S [zyj .[éyjjnk...[gyj]%

We have to integrate the polynomial P(Y,,...,Y,) on the simplex :

Sf{(yl, 2 Y)Y 20, Zkyk —1}

k=1
Let us make one more change of variables. We set :
z, =ky,, k=1..,K
Then the Jacobian of this transformation is K!

The polynomial P(y,,...,Y,) becomes :

SRR

and the set of integration is :
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The integral we want is :

1 Kz V" (&z ) (&z )"
| = — =< .. <] .. . dz,...dz, (1)
K'J[;JJ [,Z;J] [JZK:JJ

_[z{‘l---z,’}dzlu-dz,(:— (2)
with N=n +---+n,.

ITII. An induction formula

We now show how to compute the integral (1) by induction.

We write:

So:

von) (&2 )T (&) (s Y (&)
m=0 ml j=2 J j=3 J =k J =K J

That is:
n nl m
Qzpnz)=2| *|2"Q,
m=0 m1
with:
K 7. M+p=My 7 7 N3 K 7. Ny K 7. ng
oo (48885
iz J i J i« J i« |
Similarly:
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i Zj Ny —My+n, 22 i Zj My +Ny =My nlJrniml(n:L + n2 _mlj(zz sz i Zj Ny +Ny—My —M,
- ==+ —= = —-= —
iz J 2 =] m, =0 m, 2 i J

which gives:

M ™ in +n, —m 72\ (& z L L L 7 M K 7 Mk K 7 Nk
Q, = (1 2 1](4) ] __J] N el I B I e
=2l N2 (& 27) &3] E
Set v, =n, +---+n,, 4 =M +---+m, ; repeating the procedure, we get:
M +Ny —my n +n _m Z m,
_ 1T 1| 2
3 N B
with:
K 7 Va©te 1 7 Ny K 7 Mg
Qs (ZgrsZ3 My, M, ) = Z ZTJ ZTJ

More generally:

S (Vi) om & (V2 7, "o (Vi — (Zkl jmkl
= Z —- P —
DIRE AN I i =)l

with:

K 7. Vi =M1 K 7. N1 K 7. Nk
Qk(Zk""’zk;ml""’mk—l):(Z - ) (Z —J) (Z—JJ
' j—k+1 J |

VK-1~HK-2 Nk
ZKfl ZK ZK
=| —+ — _
Qs (K—l K) (K)

which gives:

VK-1—HKk-2 Vi — My 7 Mk -1
g (e

Mk 1 mK—l
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Since all coefficients are positive, there is no cancellation, and each polynomial gives its own
contribution. We denote by EQ ; the contribution of the J — th polynomial. We get :

(VK _;UK—1)!

EQK (mll-'"mK—l) = KVK*NK-l

We observe that this quantity depens on 4, =m +---+m,, only : this will be useful for

practical computations.

Also:

EQx. (/quz) = VK’%“ [VKl - ﬂKz](mK—l! EQy (:qul)

my ;=0 mK—l K _1)mK_l

More generally,

Vk-1~Hk-2 Vk—l — /Jk_z m |
E = =
Qi (:Uk—z) mgo ( m, . ] (k _1)mIH Q (ﬂk—l)

and:

EQ=EQ, = 2(”} ™EQ, (1)

m
m=0\ My 1™

Finally, by formulas (1) and (2), we get:

EQ
(N +K-1)IK!

We can write the explicit estimate:

1 & m S (v M m, b R Ve — e | m, ]
| = m: m: m:
a3 g Lo o (L o

m,=0
VK_iK_Z Vka = Hk My (=)
My (K= KMo

X

My 1=0
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IV. A first example

We treat the situation of temperatures, taken from [1]. The data are given in the table 1
above.

Here are the results of the evaluation:

corrected corrected
temperature nb of days proba temperature nb of days proba
35 9 0,118 38 1 0,020
35,2 7 0,097 38,2 1 0,018
35,4 8 0,087 38,4 1 0,016
35,6 11 0,079 38,6 2 0,015
35,8 6 0,069 38,8 0 0,013
36 3 0,062 39 0 0,011
36,2 7 0,057 39,2 0 0,010
36,4 6 0,052 39,4 3 0,009
36,6 6 0,047 39,6 0 0,008
36,8 4 0,042 39,8 0 0,006
37 3 0,037 40 0 0,005
37,2 4 0,033 40,2 0 0,004
37,4 1 0,029 40,4 1 0,003
37,6 2 0,026 40,6 0 0,002
37,8 2 0,023 40,8 0 0,002
41 0 0,001

Table 2: results of the evaluation

Here are the two sets of data on the same graph. In red, the "rough" probability, estimated
simply from the number of occurrences. In blue, the data corrected using our method. The X
axis represents the temperature and the y axis the probability of that temperature.
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Figure 3: graph of corrected values
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V. A new example

We treat here the situation of 3 classes, with the numbers n, =19,n, =19,n, =1. This situation

arises naturally, in the following context : some accident may occur with extremely small
probability. If it occurs, we consider the costs of the accident, and we have the following costs :

cst > 0.1 U with probability 0.975
cst > 0.4 U with probability 0.500
cst >1 U with probability 0.025

The maximal cost is 1.9 U. The letter U indicates the unit of cost, whatever it may be.

So we have three intervals :

Interval of cost | Probability
0.1-0.4 0.475
0.4-1 0.475
1-1.9 0.025

Table 4: the data with three intervals

The total probability is not 1, since there is a 0.025 probability that the cost may be <0.1.

If we restrict ourselves to the situation of extreme accidents, that is of costs > 0.1, we have the
following table :

Interval of cost | Probability
0.1-0.4 19/39
0.4-1 19/39
1-1.9 1/39

Table 5: the extreme accidents

In order to describe this situation, we assume that a total of 39 accidents occurred, with 19 in
the first interval, 19 in the second and 1 in the third.

We take 0.3 as the step of subdivision. So the first interval contains just one class, the second
contains two classes, namely 0.4—0.7 and 0.7 -1 and the third contains three classes, namely

1-1.3, 1.3-1.6, 1.6—-1.9. So, altogether, we now have 6 classes of equal width; we want to
estimate the probabilities p,,..., ps of these classes. These probabilities are evaluations of

random variables Z,,...,Z, satisfying, for the previous paragraph :
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From the table above, we can assume the following number of accidents in each class:

class | number of accidents
1 57
2 28
3 29
5 1
6
7

Table 6: the number of accidents per class

Indeed, we have three classes in the last interval, and if 39 accidents occur, only 1 is in this
interval. So we have to assume that 39x3=117 accidents occur, with 1 in each class of the
final interval. The 57 accidents of the original second class are put evenly into the two new
classes 2 and 3.

Here are the results:

class nurpber of estimated cost
accidents probability

1 57 0,472 0,1-0,4
2 28 0,263 0,4-0,7
3 29 0,216 0,7-1
4 0,026 1-1,3
5 0,015 1,3-1,6
6 0,008 1,6-1,9

Table 7 : the estimated probabilities and costs

estimated probability
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Figure 8: the corresponding graph
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