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Abstract 

 

Let us consider any computer software, relying upon a large number of parameters, typically, 

40 or more, used for any type of simulation. Such a tool will certainly be a very complicated 

software, therefore lengthy to execute, and the number of runs one may perform will be 

limited. One wants to perform these runs "at best", that is at specific places, called "Control 

Points". These investigations will then be considered as representative of any situation.  

 

These Control Points may be interpreted as the center of balls, covering an hypercube which 

(after normalization) describes all the possible configurations of parameters. Our first result 

shows that these balls must be extremely large. In dimension 40,  for 300 runs, their radius 

must be at least 2 3 , which means that the result obtained at a Control Point should not be 

radically different from a result obtained at another point at this distance.  

 

In other words, if one wants to monitor the results given by the computational code, using a 

small number of Control Points, the computational code must be quite "stable" : its results 

should not be very different at points which are not too far. If, on the contrary, the 

computational code may take very different values under rather similar conditions (which is 

the case, for instance, if some kind of discontinuity occurs), then such a small number of 

Control Points will not suffice. 
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In a second part, we give an explicit construction of the Control Points. Basically, their 

number must be a power of 2, and the precision increases very slowly with the number of 

balls. 

 

A comparison between the theoretical result and the practical construction shows that the 

orders of magnitude are correct. For instance, in dimension 40K  , if we use 256 balls in 

order to cover the hypercube, they must have a radius at least 2 3 3.46 . On the other hand, 

we can construct explicitly 256 balls of radius 8.5 2.9  which cover the hypercube. 

 

The overall conclusion is that people who use computational codes in high dimensional spaces, 

that is depending on a large number of parameters, should be very cautious when they claim 

that a small number of runs suffices in order to evaluate the outputs of the code. 

 

 

 

***** 

 

 

I. General presentation 

 

Let, in the sequel,  1,..., Ky C x x  be a simulation software, returning a real value y  from K  

real valued parameters 1,...., Kx x . We may assume without loss of generality that each 

parameter takes its values between 0 and 1, replacing if necessary x  by min

max min

x x

x x




, where 

minx  and maxx  are respectively the smallest and the largest value of the parameter. 

 

Therefore, our function is defined on the K   dimensional hypercube  0,1
K

KH  . 

 

A Control Point A  is a point in KH  at which we will try the code. Let  1,..., Ka a  be the 

coordinates of .A  Let N  be the number of runs we want to execute, and let 1,..., NA A  be the 

corresponding Control Points. 

 

The points nA  are not distributed at random. On the contrary, we want them to be distributed 

as regularly as possible, so that any arbitrary point A  in the hypercube should be at minimal 

distance from one of the nA 's. In mathematical terms, it means that the euclidean balls 

centered at the nA 's, with some radius r  (same for all balls) should cover the hypercube KH . 

 

Here is a picture for 2K   ; the hypercube is just a square, the balls are disks, and we cover 

the unit square with 9 balls, all having radius 
2

6
 : 
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Figure 1 : covering the unit square with 9 equal disks 

 

Here, our Control Points will be the centers of the small circles. 

 

In dimension 3, we cover the same way the unit cube by balls, and the description is the same 

in high dimensional spaces. However, in such situations, the results become highly counter-

intuitive, as we will see. For a general introduction to the geometry of high dimensional 

spaces, see the book [BB1]. 

 

Assume that a set of balls 1,..., NB B , with centers 1,..., NA A  and with same radius ,r  covers the 

hypercube. Then these balls must certainly contain in particular the summits of the 

hypercube. A summit is a point whose coordinates are 0 or 1 : they are the extreme points of 

the hypercube. For the square in dimension 2, the summits are simply the four corners of the 

square. In dimension ,K  there are 2K
 summits, since there are K  coordinates and each 

coordinate may take the values 0 or 1. 

 

II. Covering the Hypercube 

 

A. A general result 

 

We will prove : 

 

Theorem 1. – Let K  be the dimension of the space and let KH  be the K   dimensional 

hypercube  0,1
K

. Let N  be any number of balls of same radius, covering the hypercube. Let 0j  

be the largest integer satisfying : 

 

2
1

1

KK K

j N

   
      
     

                                                       (1)  

 

Then the radius of the balls satisfies : 

 

0 1r j   

 

In the case 40K   and 300,N   we find 12 2 3 3.46.r      
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Proof of Theorem 1 

 

Assume we have constructed balls which cover the hypercube. We have N  balls and 2K
 

summits. Since the balls contain all the summits, one of the balls must contain a number of 

summits which is  
2K

N
 . Let us denote by 0B  this ball. 

 

Let  1,..., KS    be any summit, with 0k   or 1. We say that another summit 

 1,..., KS      is a neighbour of S  of order 1 if the coordinates of S  and the coordinates of S  

differ by one item only. For instance, if  0,...,0S  , its neighbours of order 1 are the K  points 

 1,0,...,0 ,  0,1,0,...,0 , …,  0,...,0,1 . Each summit has K  neighbours of order 1. 

 

The same way, S  is a neighbour of S  of order 2  if their coordinates differ by 2 items only. 

The neighbours of  0,...,0  of order 2 are the points with 2 coordinates equal to 1, the others 

being 0. There are 
 

 1!

2 2 !2! 2

K K KK

K

 
  

 
 neighbours of type 2. 

 

Similarly again, S  is a neighbour of S  of order j   if their coordinates differ by j   items only. 

The neighbours of  0,...,0  of order j   are the points with j   coordinates equal to 1, the others 

being 0. There are 
K

j

 
 
 

 neighbours of type .j   

 

Take the ball 0B  defined above : the one with largest number of summits. Assume 

2
1

1

KK

N

 
  
 

. Certainly, this ball cannot be such that it contains simply a point and its 

neighbours of order 1, and no other summit, because in this case the number of points it 

contains is 1
1

K 
  
 

,  which is smaller than the number of points it should contain, namely 

2
.

K

N
 

 

For instance, if 40,K    300,N   1 1 41
1

K
K

 
    
 

 and 

402 2
3 665 038 759.

300

K

N
    

 

The same way, if K  and N  are such that 
2

1 ,
1 2

KK K

N

   
     
   

this ball cannot be such that it 

contains simply a point, its neighbours of order 1, its neighbours of order 2, and no other 

summit.  
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If 40,K   300,N    1 821.
1 2

K K   
     
     

 

More generally, this ball cannot be such that it contains simply a point, its neighbours of order 

1, …, its neighbours of order ,j  and no other summit, as long as :  

 

2
1

1

KK K

j N

   
      
     

                                                        (1)  

 

For 40,K   300,N   11,j   the left hand side of (1) takes the value 
2

3 533 047 572 <
K

N
 and 

for 12,j   the value 
2

9119 901052
K

N
  . So the largest j  for which (1) holds, denoted by 0j , 

has the value 0 11.j    

 

From (1) follows that the ball 0B  must contain a point, which is a neighbour of order 0 1,j   

of its center. But in this case, their euclidean distance is at least 0 1d j   and the radius of 

the ball is at least 0 1.r j    

 

For 40,K   300,N   they have at least 12 coordinates which differ. 

 

Our Theorem is proved. 

 

In practice, evaluations of sums of binomial coefficients are needed: 

 

Corollary 2. –  The theoretical radius thr  can be found from the formula: 

 

2 1

2 2
th

K K
r

N

 

   
 

 

 

where   is the inverse function of the Gaussian repartition function, that is  u v   if 

 H v u , with: 

 
2 /2

2

x

t dt
H x e












 

 

Proof of Corollary 2 

 

The condition:  
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2
1

1

KK K

j N

   
      
   

 

 

can be rewritten: 

 

0

1

2

j

K
i

K

i




 
 

 


 

                                                               (1)   

 

with 
1

.
N

    

Let X  be a random variable with binomial law, of parameters 
1

,
2

K
 
 
 

. Condition (1) may be 

rewritten as: 

 

 P X j                                                                (2) 

 

But such a random variable has expectation equal to / 2K  and variance equal to / 4K . 

Condition (2) may be rewritten: 

 

/ 2 / 2

/ 4 / 4

X K j K
P

K K


  
  

 
                                               (3) 

 

Using the approximation of the binomial law by a normal law (which is legitimate here), we 

may write (3) under the form : 

 

/ 2

/ 4

j K
P Z

K


 
  

 
                                                      (4) 

 

where Z  is a normalized Gaussian random variable, that is   0E Z  ,  var 1Z  . 

 

Using the repartition function of the normal law, (4) is equivalent to : 

 

/ 2

/ 4

j K
H

K


 
 

 
                                                           (5) 

 

 

 
/ 2

/ 4

j K

K
 


                                                          (6) 

 

That is: 

 

 
2 2

K K
j                                                                  (7) 



7 
BB Control Points, 2015/09 

 

The value of   is given by tables of the normal law, and we take: 

 

 0 int
2 2

K K
j  

 
  

 
                                                         (8) 

 

which gives a theoretical radius with: 

 

 2

2 2
th

K K
r   

 
                                                    (9) 

 

which proves Corollary 2. 

 

We deduce from Chernoff's bound (see [Chernoff]) an explicit estimate: 

 

Corollary 3. – The theoretical radius satisfies: 

 

  2 1
2 1

2
thr K KLog N    

 

Proof of Corollary 3 

 

We have, from Chernoff's inequality: 

 

 
2

0

2
2 exp

2

j
K

i

K K j

j K

   
        

  

 

So the condition: 

 

2
1

1

KK K

j N

   
      
     

    

is satisfied if : 

 

 
2

2 1
exp

2

K j

K N

  
 

 
 

 

 

which is equivalent to: 

 

  1
2

2
j K KLog N   

 

This gives a theoretical radius with: 
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  2 1
2 1

2
thr K KLog N    

 

which proves Corollary 3. 

 

B. Simple cases 

 

1. Covering the hypercube with a single ball 

 

The Theorem asks for the largest j  such that 1 2
1

K
K K

j

   
      
   

, which is obviously 

0 1.j K   Then the radius given by the theorem is 
2

0 1 .thr j K     

 

In practice, we may cover the hypercube with a single ball, centered at 
1 1

,...,
2 2

C
 

  
 

. Then, 

we have : 

 

2

4
obs

K
r   

 

(where the subscript "obs" stands for "observed"). So the prevision of the Theorem is 

pessimistic, but the order of magnitude is correct. 

 

2. Case of two balls 

 

Using the Theorem, we need to find the largest j  such that : 

 

11 2
1

K
K K

j

   
      
   

 

 

which gives 
0 1

2

K
j    if K  is even, and 

0
2

K
j

 
   

 if K  is odd. So, in both cases, we obtain 

approximately : 

 

2

2
th

K
r   

 

Now, in practice, we can cover the hypercube with the two balls of centers: 

 

1 1 1
, ,...,

4 2 2

 
 
 

, 
3 1 1

, ,...,
4 2 2

 
 
 
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with: 

 

2 1 1

16 4
obs

K
r


   

 

so again the order of magnitude given by the Theorem is correct. 

 

C. Volume considerations 

 

The volume of the hypercube is obviously 1, no matter what the dimension is. The volume of a 

ball of radius r  in dimension K  ( K  even) is given by the formula : 

 

 
 

/2

/ 2 !

K K

K

r
V r

K


  

 

If 40K  , 2 3r  , we get : 

 

  1310KV r   

 

This means that there is a considerable loss in volume : we need 300N   balls of radius 
1310  

in order to cover something of volume 1. 

 

We may wonder about the volume of the ball, centered at the middle point of the hypercube 

(that is 
1 1

,...,
2 2

 
 
 

 ), containing all summits. This ball has radius 
2

K
r   and, by the formula 

above, volume 
120.36 10 . So it is extremely large. Recall that, in dimension ,K  the length of 

the diagonal of the hypercube is K . The volume is small, but the diagonal is large, which is 

very counter-intuitive. In fact, the hypercube extends in many directions (or, more exactly, in 

many dimensions). 

 

D. Chosing the number of balls 

 

Assume now that we fix the radius of all balls ; how many balls do we need ? This is clear from 

formula (1). If r  is fixed, we define 0j  by : 

 
2

0 1j r   

 

and the number N  is given by : 
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0

2
1 int

1
1

K

N
KK

j

 
 
  
   

     
    

  , 

 

where  int x  denotes the integral part of .x  This means that : 

 

0 01

2 2K K

j j

N
 

                                                                (2) 

 

where we write : 

 

1
1

j

K K

j


   
      

     

                                                         (3)

 

 

Any change of N  in the interval (2) is useless, so one should take the N  which is as small as 

possible, that is the left bound of the interval. For 40K   and 0 11,j   we find the interval : 

 

120 311N   

 

which means that we can achieve the same result with 120 balls as with 300 balls : this is 

important in practice. 

 

We have obtained: 

 

Theorem 4.- For a given value of r , and 
2

0 1j r  , all values of N  in the interval 

0 01

2 2K K

j j

N
 

   (where j  is defined by (3)) provide the same covering. Therefore, one should 

use the value 

0 1

2
1 int

K

j

N
 

 
   

 
 

 

 which represents the smallest number of balls which are 

required in order to obtain this covering. Putting more balls is a waste of time. 
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III. Choosing the centers of the balls 

 

We now indicate how to chose the balls. In this section, we give a constructive approach which, 

theoretically speaking, might not be best possible. However, the order of magnitude is correct, 

as the Theorem in section 1 shows. 

 

In what follows, the parameters are treated one by one. If we know nothing about their 

respective importance, the order is arbitrary. But if, for some practical reasons, we have a 

ranking upon the parameters, we should of course start with the most important one. 

 

Covering with 1 and 2 balls has been described above.  

 

A. Three balls 

 

A covering by 3 balls is obtained by dividing the interval for the first parameter into 3 

subintervals, which gives the centers: 

 

1 1 1
, ,...,

6 2 2

 
 
 

, 
3 1 1

, ,...,
6 2 2

 
 
 

, 
5 1 1

, ,...,
6 2 2

 
 
 

 

 

The radius is 
2

2

1 1

6 4

K
r


    

 

B. Four balls 

 

A covering by 4 balls is obtained by dividing the intervals for the first and second parameters 

into 2, which gives the centers: 

 

1 1 1 1
, , ,...,

4 4 2 2

 
 
 

, 
3 1 1 1

, , ,...,
4 4 2 2

 
 
 

, 
1 3 1 1

, , ,...,
4 4 2 2

 
 
 

, 
3 3 1 1

, , ,...,
4 4 2 2

 
 
 

 

 

The radius is 
2

2

2 2

4 4

K
r


   

 

C. General pattern 

 

1. Description 

 

Assume that the interval for the first parameter is divided into 1n  sub-intervals,…, the 

interval for the K   th parameter is divided into Kn  sub-intervals, then the centers are all the 

points of the form : 
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1

1

2 1 2 1
,...,

2 2

K

K

j j

n n

  
 
 

 , with 
1 10,..., 1,j n   …, 0,..., 1.K Kj n            (1) 

 

and the radius satisfies: 

 

 
2

2 2
1 1

1 1 1

42

K K

k k kk

r
nn 

                                                          (2) 

 

The number of balls in this case is 
1 KN n n   . 

 

2. Obtaining the smallest radius 

 

Given a number N  of balls, we want the radius to be as small as possible. From formula (1) 

follows that we should divide as many parameters as possible. For instance, if 4N  , dividing 

the first interval into 4 gives 
2 1 1

1
4 16

r K
 

   
 

 and dividing the first two intervals into 2 

gives 
2 1 2

2
4 4

r K
 

   
 

, which is obviously smaller. 

 

3. Consequences 

 

An obvious consequence is that a larger N  does not necessarily provide a better solution. For 

instance, the value 17N   allows the division of the first interval into 17 sub-intervals, 

giving: 

 

2

2

1 1
1

4 17
r K

 
   

 
, 

 

whereas the value 16N   allows the division of 4 intervals into 2 pieces, giving: 

 

2

2

1 4
4

4 2
r K

 
   

 
, 

 

which is much smaller. 

 

4. Practical rule 

 

Assume that the parameters are written in decreasing order of importance. Then the best 

strategy is to use a division by 2, as long as possible. This means that the number of balls 

should be chosen in the sequence 
2 31,2,2 ,2 ,.... . If we use 2kN   balls, we divide the interval of 



13 
BB Control Points, 2015/09 

variation of k  parameters into 2, which means that the centers are of the form 
2 1

2

j 
 

( 0,1)j   for the first k  and of the form 
1

2
 for the last K k . The value of the radius is: 

 

2

2

1

4 4
k

k
r K k

 
   

 
                                                            (3) 

 

5. Comparison between two binary steps 

 

Let us see what happens if we use 
12k
 balls instead of 2k

. Then, by the paragraph above: 

 

 1

2

2

1 1
1

4 4
k

k
r K k

 
    

 
 

 

and therefore : 

 

1

2 2

2 2

3

16
k kr r     

 

So, the multiplication by 2 of the number of balls gives a decrease on 
2r  of a constant 

quantity, namely 
3

16
. Using any intermediate number of balls is rather useless. 

 

6. Reaching a given threshold 

 

Assume we want to find the number of balls necessary to have 
2r A , for a given .A  Then, by 

(3), 

 

3
4

4

k
K A   

 

which gives : 

 

 
4

4
3

k K A                                                                (4) 

 

This conclusion is very strong. It shows that, unless we accept a threshold which is 

proportional to K , the number of necessary balls is exponential : 
4 /32 KN  .  
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IV. Comparison with the theoretical bounds 

 

We now compare the radius obtained in this construction with the radius indicated by 

Theorem 1.  

 

A. Numerical comparison 

 

It is easy to do when numerical values are chosen. So let us take 40,K   
8256 2N   . We 

find 
0 11j   in the definition given in Theorem 1 ; therefore, the theoretical radius satisfies : 

 
2 12thr   

 

For the practical radius, we use formula (2) above, and we get: 

 

2

2
1

1 1 1 8 34
32 8.5

4 4 4 4

K

obs

k k

r
n

 
     

 


 
     

So the order of magnitude is correct, once again. 

 

B. Theoretical comparison 

 

A general comparison between the estimates given by Theorem 1 and the practical 

construction is harder to obtain, because it requires the evaluation of partial sums of binomial 

coefficients. We use Corollary 3 above, with 2kN   balls, and we want to find the largest j  

such that : 

 

0

2

2

Kj

k
i

K

i

 
 

 
  

 

If we take k  proportional to ,K  that is: 

 

k K  

 

Corollary 3 gives: 

 

 2 1 2 2
2

th

K
r Log    

 

On the other hand, the practical construction gives: 

 

2 1 1 3

4 4 4 4

k k
r K k K

   
       

   
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that is: 

 

2 3
1

4 4
obs

K
r

 
  

 
 

 

So there is roughly a factor 2 between the square of the radii, which is a correct order of 

magnitude. 
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