Reconstructing a signal from the knowledge of the norms of its multiples

by Bernard Beauzamy

Société de Calcul Mathématique SA 111 Faubourg Saint Honoré, 75008 Paris
february 1996

Abstract

A periodic signal f is unknown and is not directly accessible. The only available data are the numbers $\|f . g\|$, for all polynomials g. Which norm $\|$.$\| should be chosen? We show that if \|$.$\| is the usual$ L_{2}-norm, reconstructing f is impossible but, if $\|$.$\| is Bombieri's norm, the reconstruction can be achieved.$ We describe the algorithm in detail and study its complexity.

Let us consider a periodic signal f, which is unknown and not directly accessible to any measurement. The receiving device - the captor- gives only a scalar information (that is, in fact, a positive real). However, before treating f, we can perform on it multiplicative transformations, that is, for any g, explicit and known, we can measure $f g$. The question is : how can we reconstruct f ?

Practically speaking, we wish to compute only a finite number (finite but arbitrarily large) of Fourier coefficients of f, that is to determine the Fourier series of f, truncated at some specified order $N: \sum_{-N}^{N} a_{j} e^{i j t}$. Since we know that we can multiply by any multiple of $e^{i t}$, we may therefore consider only analytic polynomials, that is assume from the very beginning that f has the form $\sum_{0}^{n} a_{j} e^{i j t}$.

Our question is thus : let f be a polynomial of degree n, with unknown coefficients. If we know the set

$$
\begin{equation*}
E_{f}=\{\|f g\| ; g \text { arbitrary polynomial }\} \tag{1}
\end{equation*}
$$

can we reconstruct f ?
The norm $\|$.$\| can be any norm which makes sense on the space of polynomials. We will consider two of$ them here. First, the most natural and widely used : the L_{2}-norm, of which we show that it is inadequate, and then Bombieri's norm, of which we show that it allows the reconstruction of f.

For a polynomial $P=\sum_{0}^{n} c_{j} z^{j}$, we let

$$
\|P\|_{2}=\left(\sum\left|c_{j}\right|^{2}\right)^{1 / 2}=\left(\int_{0}^{2 \pi}\left|P\left(e^{i t}\right)\right|^{2} \frac{d t}{2 \pi}\right)^{1 / 2}
$$

be the usual norm on $L_{2}(\Pi)$.
Theorem 1. - Assume we know the set

$$
\begin{equation*}
E_{f}=\left\{\|f g\|_{2} ; g \text { arbitrary polynomial }\right\} \tag{2}
\end{equation*}
$$

then f can be reconstructed only within 3 ambiguities :

- taking the conjugate : f can be replaced by \bar{f},
- multiplication by any function of modulus 1 on the unit circle,
- for each zero a, choosing between a and $-1 / \bar{a}$, that is, each monomial $z-a$ cannot be distinguished from $\frac{1}{a}(1-\bar{a} z)$.

So we see that this procedure will not allow any distinction between (for instance) :

$$
A\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)
$$

and

$$
A z_{1} \cdots z_{k}\left(z-1 / \bar{z}_{1}\right) \cdots\left(z-1 / \bar{z}_{k}\right)\left(z-z_{k+1}\right) \cdots\left(z-z_{n}\right) .
$$

Proof of Theorem 1. - If E_{f} is known, so is \widetilde{E}_{f}, defined by

$$
\begin{equation*}
\widetilde{E}_{f}=\left\{\|f g\|_{2} ; g \in L_{2}(\Pi)\right\} \tag{3}
\end{equation*}
$$

since trigonometric polynomials are dense in $L_{2}(\Pi)$.

Let $a, 0 \leq a<2 \pi$, and $\varepsilon>0$, and let us consider the function $g=g_{a, \varepsilon}$ defined by

$$
\begin{aligned}
g_{a, \varepsilon}\left(e^{i t}\right) & =1 / \sqrt{2 \varepsilon} \text { if }|t-a|<\varepsilon, \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

We have :

$$
\begin{aligned}
\left(\int_{-\pi}^{\pi}\left|f\left(e^{i t}\right)\right|^{2}\left|g_{a}\left(e^{i t}\right)\right|^{2} \frac{d t}{2 \pi}\right)^{1 / 2} & =\left(\frac{1}{2 \varepsilon} \int_{a-\varepsilon}^{a+\varepsilon}\left|f\left(e^{i t}\right)\right|^{2} \frac{d t}{2 \pi}\right)^{1 / 2} \\
& \rightarrow\left|f\left(e^{i a}\right)\right|, \quad \text { when } \varepsilon \rightarrow 0
\end{aligned}
$$

and so we know the set of values $|f(z)|,|z|=1$, that is the function $\varphi(z)=|f(z)|,|z|=1$.
Therefore, we can reconstruct the outer part of f, in its decomposition in the Hardy space H^{2}, by the standard formula :

$$
F(z)=\exp \int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} \log \left(\varphi\left(e^{i t}\right)\right) \frac{d t}{2 \pi}
$$

and we know that $\left|F\left(e^{i t}\right)\right|=\varphi\left(e^{i t}\right)=\left|f\left(e^{i t}\right)\right|$ for every t. If f is a polynomial, F is also a polynomial, of the same degree, with no zero inside the open unit disk D. If f has no zero in $D, F=f$. If f has one root or several roots in D, F is obtained by reflection of these roots : if $f=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right)$, with $\left|z_{1}\right| \leq 1, \ldots,\left|z_{k}\right| \leq 1$, then

$$
F=\left(1-\bar{z}_{1} z\right) \cdots\left(1-\bar{z}_{k} z\right)\left(z-z_{k+1}\right) \cdots\left(z-z_{n}\right)
$$

This proves the theorem.
Remark. - The ambiguities in the reconstruction of f come from the obvious fact that the tool we use -namely the L_{2}-norm-, employs only the values of f on the unit circle, and that $|z-a|=|1-\bar{a} z|$ if $|z|=1$. If we had taken f in H^{2} (not just a polynomial), we would get a similar result : we can reconstruct the outer part of f; we have no information on its inner part m (Blaschke factor and singular part), since it satisfies $|m(z)|=1,|z|=1$.

We now study the same question, but this time using Bombieri's norm. We will see that the result is now satisfactory : reconstructing f is possible, up to the multiplication by a complex number of modulus 1 , of course.

The proper frame will be here that of homogeneous polynomials in many-variables (as in Beauzamy-Bombieri-Enflo-Montgomery [1] and Beauzamy-Dégot [2]). The case of an ordinary one-variable polynomial $\sum_{0}^{n} a_{j} z^{j}$ is deduced from the homogeneous two-variable $\sum_{0}^{n} a_{j} z^{j} z^{\prime n-j}$, just by taking $z^{\prime}=1$.

So let

$$
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{|\alpha|=n} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}
$$

be a homogeneous polynomial in N variables, with degree n.
We have $|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$. Bombieri's norm, which depends on the degree, is defined by the expression :

$$
\begin{equation*}
[P]=\left(\sum_{|\alpha|=m} \frac{\left|a_{\alpha}\right|^{2} \alpha!}{m!}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

where $\alpha!=\alpha_{1}!\cdots \alpha_{N}!$. The reader is referred to Beauzamy-Dégot [2] and Reznick [3] for the basic properties of this norm.

Theorem 2. - Let P be a homogeneous polynomial in N variables, with degree n, and unknown coefficients. If we know the set

$$
\begin{equation*}
F_{P}=\{[P Q] ; \varphi \text { homogeneous polynomial in } \mathrm{N} \text { variables, with degree } \leq \mathrm{n}\}, \tag{5}
\end{equation*}
$$

we can reconstruct P, up to the multiplication by a complex scalar of modulus 1 .
Proof of Theorem 2. - The proof we give now follows the lines indicated by the referee : it is shorter than the one we originally gave.

First, from the knowledge of (5), we deduce, by the usual polarization formulas, the knowledge of all the scalar products

$$
\begin{equation*}
A_{k}(\alpha, \beta)=\left[x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} P, \quad x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} P\right] \tag{6}
\end{equation*}
$$

for all $k \leq n$ and all α, β, with $|\alpha|=|\beta|=k$.
Indeed, each scalar product (6) can be computed from the four numbers

$$
\begin{equation*}
\left[\left(x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} \pm x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}}\right) P\right], \quad\left[\left(x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} \pm i x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}}\right) P\right] . \tag{7}
\end{equation*}
$$

We observe, at this stage, that we won't use all the set (5), but only the scalar products (6), so we need only the quantities (7) : there are $4\binom{N+m-1}{m}$ such numbers.

Now, from the numbers (6), we will deduce the knowledge of all the numbers

$$
\begin{equation*}
B_{k}(\alpha, \beta)=\left[P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D^{\alpha} P\right] \tag{8}
\end{equation*}
$$

for all $k \leq n$, all α, β, with $|\alpha|=|\beta|=k$.
Indeed, for $k=1$, we have (see [2])

$$
\begin{aligned}
{\left[x_{i} P, x_{j} P\right] } & =\frac{1}{n+1}\left[P, \frac{\partial}{\partial x_{i}}\left(x_{j} P\right)\right] \\
& =\frac{1}{n+1}\left[P, \frac{\partial x_{j}}{\partial x_{i}} P\right]+\frac{1}{n+1}\left[P, x_{j} \frac{\partial P}{\partial x_{i}}\right]
\end{aligned}
$$

and so

$$
\left[P, x_{j} \frac{\partial P}{\partial x_{i}}\right]=(n+1)\left[x_{i} P, x_{j} P\right]-\delta_{i j}[P, P],
$$

where $\delta_{i j}=0$ if $i \neq j,=1$ if $i=j$.
So we have the formula

$$
\left[P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D^{\alpha} P\right]=(n+1)\left[x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} P\right]-\delta_{\alpha, \beta}[P, P]
$$

or

$$
B_{1}(\alpha, \beta)=(n+1) A_{1}(\alpha, \beta)-\delta_{\alpha, \beta} A_{0}(\alpha, \beta)
$$

Now, assume $B_{1}(\alpha, \beta), \ldots, B_{k-1}(\alpha, \beta)$ can be computed from $A_{0}(\alpha, \beta), \ldots, A_{k-1}(\alpha, \beta)$. We compute the numbers $B_{k}(\alpha, \beta)$, where $|\alpha|=|\beta|=k$. Take any coordinate $\alpha_{j} \geq 1$, say for instance $\alpha_{1} \geq 1$. Then, as before :

$$
\begin{aligned}
{\left[x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} P\right] } & =\frac{1}{n+k}\left[x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \cdots x_{N}^{\alpha_{N}} P, \beta_{1} x_{1}^{\beta_{1}-1} x_{2}^{\beta_{2}} \cdots x_{N}^{\beta_{N}} P\right] \\
& +\frac{1}{n+k}\left[x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D_{1} P\right],
\end{aligned}
$$

and so

$$
\begin{aligned}
& {\left[x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D_{1} P\right]=} \\
& (n+k) A_{k}(\alpha, \beta)-\beta_{1} A_{k-1}\left(\alpha_{1}-1, \alpha_{2}, \ldots, \alpha_{N} ; \beta_{1}-1, \beta_{2}, \ldots, \beta_{N}\right)
\end{aligned}
$$

from which one deduces all the numbers

$$
\begin{equation*}
\left[x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D_{1} P\right] \tag{9}
\end{equation*}
$$

for all $\alpha, \beta,|\alpha|=|\beta|=k$. From these numbers one deduces as before the numbers

$$
\left[x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D_{1}^{2} P\right],
$$

and so on, until all derivatives are transferred to the right-hand side, and we get $B_{k}(\alpha, \beta)$.
Remark. The computation of $B_{k}(\alpha, \beta)$ can be made more explicit, using the differential identity proved in [2] (Theorem 12). Indeed, with the present notation, this theorem gives, if $|\alpha|=|\beta|=m$, degree $P=n$:

$$
\begin{aligned}
& {\left[x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}} P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} P\right]=} \\
& \frac{1}{(m+n)!} \sum_{k \geq 0}(n-m+k)!\sum_{|\gamma|=k} \frac{\alpha!\beta!}{(\alpha-\gamma)!(\beta-\gamma)!\gamma!}\left[D^{\beta-\gamma} P, D^{\alpha-\gamma} P\right]
\end{aligned}
$$

The term with $k=0$ in the right-hand side gives $\left[D^{\beta} P, D^{\alpha} P\right]$, that is $\left[P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D^{\alpha} P\right.$], and the terms for $k \geq 1$ correspond to $B_{j}(\alpha, \beta)$, with $j<m$.

When all the $B_{k}(\alpha, \beta), k \leq n$ are known, let us take $|\alpha|=|\beta|=n$. We have

$$
\begin{equation*}
B_{n}(\alpha, \beta)=\left[P, x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} D^{\alpha} P\right]=\frac{1}{n!}\left[D^{\beta} P, D^{\alpha} P\right]=\frac{\alpha!\beta!}{n!} \overline{a_{\alpha}} a_{\beta} \tag{10}
\end{equation*}
$$

So we know all the numbers $\overline{a_{\alpha}} a_{\beta}$. Taking for instance $\alpha=(1,0, \ldots, 0)$ and $\beta=\alpha$, we get $\left|a_{1,0, \ldots, 0}\right|^{2}$ (or any other term if this one is zero), so $a_{1,0, \ldots, 0}$ is known up to a complex factor of modulus 1. All other coefficients a_{β} are then deduced from (10). This finishes the proof of Theorem 2.

Remark. Pratical computation of Bombieri's norm $[P]$, for a homogeneous polynomial P of degree n in N variables, can be made in two ways :

- from the coefficients of the polynomials, using the definition (4), if these coefficients are known,
- from the values of $P(z)$ inside the unit disk, using an integral formula, such as Boyd's :

$$
[P]=\frac{n+1}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{\left|P\left(r e^{i \theta}\right)\right|^{2}}{\left(1+r^{2}\right)^{n+2}} r d r d \theta
$$

References

[1] B. Beauzamy, E. Bombieri, P. Enflo, H. Montgomery : Products of polynomials in many variables. Journal of Number Theory, vol. 36, 2, oct. 1990, 219-245.
[2] B. Beauzamy, J. Dégot : Differential identities, Transactions of the A.M.S., vol. 347, no 7, July 1995, pp. 2607-2619.
[3] Reznick, Bruce : An inequality for products of polynomials. Proceedings A.M.S., vol. 117, 4, 1993, pp. 1063-1073.

