
The path to the zeros of a polynomial

by Bernard Beauzamy

Abstract. – Let P (z) be a polynomial in one complex variable, with complex coefficients, and let
z1, . . . , zn be its zeros. Assume, by normalization, that P (0) = 1. The direct path from 0 to the root zj is
the set {P (tzj), 0 ≤ t ≤ 1} . We are interested in the altitude of this path, which is |P (tzj)| . We show that
there is always a zero towards which the direct path declines near 0, which means |P (tzj)| < |P (0)| if t is
small enough. However, starting with degree 5, there are polynomials for which no direct path constantly
remains below the altitude 1.
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Although many algorithms exist which, starting at a given point z0 in the complex plane, find the zeros
of a given polynomial, none of them is completely satisfactory, neither in theory nor in practice.

In practice, the most widely used are variations upon Newton’s method, Traub-Jenkins algorithm [3]
and Schönhage’s algorithm [5]. They work satisfactorily in a number of cases, but may fail if the degreee of
the polynomial is too high or if the roots are too clustered. Another algorithm, due to the author [2], has
not yet been practically implemented, but suffers certainly from these defects and/or some others.

This is due to the fact that the theory behind all these algorithms is not well-understood. In what cases
(that is : for what polynomials ?) is one algorithm better than the other ? What situations (i.e. dispositions
of the zeros) will slow down any of them ? At present, such questions are quite unclear.

Indeed, there is a strong lack of general information regarding the zeros of a polynomial. By “general
information”, I mean quantitative data, depending only on the coefficients, and satisfied by any polynomial.
As an example, let me mention an estimate for the radius of the smallest disk, centered at 0, and containing
at least a zero. This radius r satisfies

r ≤
√

n[P ]2 − 1, (1)

where P (z) =
∑n

0 ajz
j and [P ] = (

∑n
j=0 |aj |2/

(
n
j

)
)1/2 is Bombieri’s norm of P (see [1]). Many other

estimates of r exist in the literature, for instance due to Cauchy (see Marden [4]), sometimes weaker than
(1), sometimes stronger, but nobody knows for which polynomials which one is best.

Another general information was given by Smale [6]. Let P (z) be a polynomial, z1, . . . , zn its roots, all
different from 0. Then, for one of the zeros, say zj , one has

1
|zj |

∣∣∣∣∫ zj

0

P (ζ)dζ

∣∣∣∣ ≤ 4|P (0)|, (2)

and S. Smale asks if 4 cannot be replaced by a smaller number.

This question can be interpreted in a more general setting, meeting exactly what I described at the
beginning of this introduction : if you start at a given point, say z = 0, and if you look at |P (z)| when z

moves from 0 to one of the zeros, zj , what can you say about the path ? For instance, what is its length
and what is its maximal altitude ? In this short note, we have concentrated ourselves on the second question
(the altitude), which looks easier than the first.
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Let now P (z) = (z − z1) · · · (z − zn) be a polynomial, normalized with leading coefficient 1. We call
“direct path to the zero zj ” the set {P (tzj), 0 ≤ t ≤ 1} . We start at 0, and we will investigate the altitude
of the path, which is max0≤t≤1 |P (tzj)| .

Theorem. – 1. For every polynomial P with P (0) 6= 0 , there is a root zj for which the direct path towards

this root is initially declining, which means that there is an ε > 0 (depending on P and on the zero), for

which

|P (tzj)| < |P (0)|, (3)

for all t , 0 < t < ε .

– 2. However, there exist polynomials (even with all roots on the unit circle) for which no direct path

stays under the horizontal plane of altitude |P (0)| , which means that, for such P ’s :

max
0≤t≤1

|P (tzj)| > |P (0)|, (4)

for every j = 1, . . . , n .

Proof of the theorem.

The first part will follow from Taylor’s formula. Since P (z) is an analytic function, it is clear that,
starting at any point, there are directions (totalizing an angle of π ) at which |P (z)| diminishes, but we have
to prove that one of these directions is the direction of a root.

– Let us first consider the case where P ′(0) 6= 0. We write P (z) =
∑n

0 ajz
j , with a0 6= 0, a1 6= 0. For

any zero zj , we have
|P (tzj)|2 ∼ |a0|2 + 2t Re(a0a1zj)

when t → 0. So all we have to show is that there is a zero zj for which

Re (a0a1zj) < 0. (5)

This is equivalent to :

Re

(
(−1)n (

n∏
i=1

zi) (−1)n−1 (
n∏

i=1

zi) (
n∑

i=1

1
zi

)zj

)
< 0,

or

Re (zj(
n∑

i=1

1
zi

) > 0. (6)

But (6) is clear : by a proper rotation of the x axis (which changes nothing to the problem), we may assume∑
i 1/zi to be real positive. Then, one of the Re(1/zj) has to be real positive, and so is Re(zj), which

proves (6).

– Let us now look at the general case : a0 6= 0, a1 = · · · = ak−1 = 0, ak 6= 0 (k ≤ n), which is more
difficult.

Then, for z 6= 0, t small enough,

|P (tz)|2 ∼ |a0|2 + 2tk Re(a0akzk), (7)

and we want to show that there is a zero zj for which

Re(a0akzk) < 0. (8)
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This condition can be rewritten, with βj = 1/zj :

Re

(
(−1)n (

n∏
i=1

zi) (−1)n−k (
n∏

i=1

zi)
∑

i1<···<ik

βi1 · · ·βik
zk

j

)
< 0,

or

(−1)k Re

(
zk
j

∑
i1<···<ik

βi1 · · ·βik

)
< 0. (9)

We let S1 =
∑n

i=1 βi , S2 =
∑

i1<i2
βi1βi2 , and so on until Sk =

∑
i1<···<ik

βi1 · · ·βik
.

The quantity Sk
1 can be written :

Sk
1 =

n∑
i=1

βk
i + R(S1, . . . , Sk−1) + C Sk, (10)

where R is a polynomial in S1, . . . , Sk−1 with no constant term, and C is a constant (independent of P )
which we now determine.

To this aim, we take βj = e2ijπ/k , j = 0, . . . , k − 1. Then S1 = · · · = Sk−1 = 0, and

Sk = β1 · · ·βk = e2iπ(1+2+···+k)/k = (−1)k+1,

so C = (−1)k/k , and formula (10) becomes

Sk
1 =

n∑
i=1

βk
i + R(S1, . . . , Sk−1) +

(−1)k

k
Sk. (11)

Since we assumed a1 = · · · = ak−1 = 0, we get S1 = · · · = Sk−1 = 0, and therefore

n∑
i=1

βk
i =

(−1)k+1

k
Sk. (12)

In order to prove (9), we may assume Sk to be real positive (by a global rotation of the picture, as we did
previously), and so

∑n
i=1(−1)k+1βk

i is real positive.
So, there must be an index j for which Re((−1)k+1βk

j ) > 0.
But this is equivalent to

Re

(
(−1)k+1

zk
j

)
> 0, (13)

which proves (9) and finishes the proof of the first part of the Theorem.

The proof of the second part will rely upon the ideas we just presented. Let us come back to the case
a1 6= 0. We have seen in formula (5) that the direct path towards the root zj is locally declining near the
origin if Re(zj

∑n
i=1 1/zi) > 0.

An obvious remark is that this estimate may very well hold for one zero only : indeed, we may have∑
1/zi real positive, but only one of the zi ’s has positive real part. This is the case, for instance, for a

polynomial of the form (z−eiθ)k(z−e−iθ)k(z−1), if θ > π/2 is close enough to π/2. For such a polynomial,
the direct paths towards eiθ and e−iθ will be locally climbing near 0. But the value of |P | on the path
to 1, say |P (1/2)| , satisfies |P (1/2)| ≥ 1

2 ( 5
4 )k , and this is larger than 1 if k is large enough. Precisely, we

have :
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Proposition 2. – Let P (z) = (z − eiθ)4(z − e−iθ)4(z − 1) , where −1/8 < cos θ < 0 . Then the direct paths

towards eiθ and e−iθ are locally climbing near 0 , and |P (1/2)| > 1
2 ( 5

4 )4 > 1.22 .

Proof of Proposition 2. – We have :

|P (teiθ)| = (1− t)4 |1− te2iθ|4 |1− teiθ|

and so

|P (teiθ)|2 = (1− t)8 (1− 2t cos 2θ + t2)4 (1− 2t cos θ + t2) ∼ 1− 2t(4 + 4 cos 2θ + cos θ),

and 4 + 4 cos 2θ + cos θ = (8 cos θ + 1) cos θ ; the result follows. The largest slope at the origin is obtained
with cos θ = −1/16 ; it gives |P (teiθ)|2 ∼ 1 + t/16.

In fact, this phenomenon is quite general, and appears at any degree, starting at n = 5. Indeed, the
polynomial

P (z) = (z − eiθ)2(z − e−iθ)2(z − 1),

with cos θ = −1/6 satisfies :
|P (teiθ)|2 = |P (te−iθ)|2 = 1.001168.....

for t = 0.0209..... , and
|P (t)|2 = 1.0122....

for t = 0.4527.....

On the other hand, it can be shown that for any polynomial of degree 4 or less, there is always a direct
path which stays belows the plane of altitude |P (0)| (and so, for such a polynomial, the 4 in Smale’s formula
can be reduced to 1).

Finally, we observe that there is no absolute constant C such that, for any polynomial P ,

min
z,P (z)=0

max
0≤t≤1

|P (tz)| ≤ C|P (0)|. (14).

Indeed, if P5 is the polynomial of degree 5 we just computed, we have P5(0) = 1, and

min
z,P5(z)=0

max
0<t<1

|P5(tz)| ≤ α > 1,

so
min

z,P5(z)=0
max
0<t<1

|P k
5 (tz)| = αk → +∞, when k → +∞,

which shows that there cannot be in (14) a bound C independent of the degree ; moreover, the bound must
be at least exponential in the degree.
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