
Correction to the paper “Estimates for H2 -functions . . . ”

by Bernard Beauzamy

As pointed out by [], Lemma 2.6 is not correct, so the proof of Proposition 2.5 has to be slightly modified,
and the statement of Theorem 2.7 (derived the same way) contains slightly different estimates.

Proposition 2.5. – If δk(f) < (1− |α|)/8 , then

δk−1(g) ≤ 4
1− |α|

δk(f) .

Proof. – First, we write the Taylor expansion of f :

f(z) = αb0 + (−b0 + αb1)z + · · ·+ (−bj−1 + αbj)zj + · · · (2.13)

We write d instead of cfk(f), and δ instead of δk(f). We deduce from (2.13) :

∞∑
k+1

| − bj−1 + αbj |2 = δ2
(
|αb0|2 +

k−1∑
0

| − bj + αbj+1|2
)
. (2.14)

But :

|bk| ≤
∞∑
0

|α|j | − bk+j + αbk+j+1|

≤ (
∞∑
0

|α|2j)1/2 (
∞∑
0

| − bk+j + αbk+j+1|2)1/2

≤
(

1
1− |α|2

)1/2

(
∞∑
0

| − bk+j + αbk+j+1|2)1/2

So we deduce from (2.14) :

(1− |α|2)|bk|2 ≤
∞∑

k+1

| − bj−1 + αbj |2 ≤ 3δ2
k∑
0

|bj |2 ,

and this implies

|bk|2 ≤ 3δ2

1− |α|2 − 3δ2

k−1∑
0

|bj |2 . (2.15)

We also have

(
∞∑

k+1

| − bj−1 + αbj |2)1/2 ≥ (1− |α|)(
∞∑

k+1

|bj |2)1/2 ,

which implies
∞∑

k+1

|bj |2 ≤ 3δ2

(1− |α|)2
k∑
0

|bj |2 . (2.16)
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Using (2.15), we deduce from (2.16)

∞∑
k+1

|bj |2 ≤ 3δ2

(1− |α|)2

(
1 +

3δ2

1− |α|2 − 3δ2

) k−1∑
0

|bj |2 . (2.17)

Using (2.15) once again, we finally obtain

∞∑
k

|bj |2 ≤
(

3δ2

(1− |α|)2

(
1 +

3δ2

1− |α|2 − 3δ2

)
+

3δ2

1− |α|2 − 3δ2

) k−1∑
0

|bj |2

≤ 6δ2

(1− |α|)(1− |α|2 − 3δ2

k−1∑
0

|bj |2 ,

from which the Proposition follows immediately.

We can now prove :

Theorem 2.7. – Let f be a function in H2 , with the zeros written in increasing order :

|α1| ≤ |α2| ≤ |α3| ≤ · · ·

Then the k + 1 -st zero αk+1 satisfies :

|αk+1| ≥ 1− 4δ1/(k+1) ,

with δ = δk(f) .

Proof. – The case k = 0 is left to the reader, and we assume k ≥ 1. We write

f = (α1 − z) · · · (αk − z)g.

We first observe that
|αk+1| ≥ cf0(g) . (2.18)

Indeed, αk+1 is the first zero of g . Jensen’s formula gives :

|g(0)|
∏

n≥k+1
|αn|≤1

1
|αn|

≤ M(g) ≤ |g|2 ;

but since ∏
n≥k+1
|αn|≤1

1
|αn|

≥ 1
|αk+1|

,

we deduce

|αk+1| ≥
|g(0)|
|g|2

,

as we claimed.
Since cf20(g) = 1/(1 + δ2

0(g)), we deduce from (2.18)

1− |αk+1| < δ2
0(g). (2.19)

.
We consider two cases :
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Case 0. – |αk| ≥ 1− 4δ1/(k+1) .
Then a fortiori |αk+1| satifies the same estimate, and the theorem is proved, or

Case 1. – |αk| < 1− 4δ1/(k+1) .

We now consider this last case. Then also |α1|, · · · , |αk| satisfy this estimate, which implies

δ <
(1− |αk|)k+1

4k+1
. (2.20)

Set now f1 = f , f2 = (α2 − z) · · · (αk − z)g , . . . , fk = (αk − z)g , fk+1 = g .
Since δ < (1− |α1|)/8, Proposition 2.5 implies

δk−1(f2) <
4δ

1− |α1|
,

and by (2.20),
4δ

1− |α1|
<

1− |α2|
8

.

Therefore, Proposition 2.5 gives

δk−2(f3) <
4δk−1(f2)
1− |α2|

<
42δ

(1− |α1|)(1− |α2|)
.

Since for every j = 1, . . . , k , condition (2.20) implies :

4j−1δ

(1− |α1|) · · · (1− |αj−1|)
<

1− |αj |
8

,

Proposition 2.5 gives

δk−j(fj+1) <
4δk−j+1(fj)

1− |αj |
<

4jδ

(1− |α1|) · · · (1− |αj |)
.

Finally, for j = k , we get

δ0(g) <
4kδ

(1− |α1|) · · · (1− |αk|)
≤ 4kδ

(1− |αk|)k
. (2.21)

Taking (2.20) into account once again gives :

δ0(g) < δ1/(k+1) ,

and by (2.19),
1− |αk+1| < δ2/(k+1) < 4δ1/(k+1) ,

and the Theorem is proved.

From these estimates one can easily deduce an asymptotic behavior of |αk+1| when d is close to 1 :

Corollary 2.8. – When d → 1− , the k + 1 -st zero of f satisfies :

1− |αk+1| ∼ 4
(
2(1− d)

)1/2(k+1)
.

We have investigated, so far, the structure of the set {f = 0} . We now turn to the set {|f | < ε} .
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