As pointed out by [], Lemma 2.6 is not correct, so the proof of Proposition 2.5 has to be slightly modified, and the statement of Theorem 2.7 (derived the same way) contains slightly different estimates.

Proposition 2.5. - If $\delta_{k}(f)<(1-|\alpha|) / 8$, then

$$
\delta_{k-1}(g) \leq \frac{4}{1-|\alpha|} \delta_{k}(f)
$$

Proof. - First, we write the Taylor expansion of f :

$$
\begin{equation*}
f(z)=\alpha b_{0}+\left(-b_{0}+\alpha b_{1}\right) z+\cdots+\left(-b_{j-1}+\alpha b_{j}\right) z^{j}+\cdots \tag{2.13}
\end{equation*}
$$

We write d instead of $\mathrm{cf}_{k}(f)$, and δ instead of $\delta_{k}(f)$. We deduce from (2.13):

$$
\begin{equation*}
\sum_{k+1}^{\infty}\left|-b_{j-1}+\alpha b_{j}\right|^{2}=\delta^{2}\left(\left|\alpha b_{0}\right|^{2}+\sum_{0}^{k-1}\left|-b_{j}+\alpha b_{j+1}\right|^{2}\right) \tag{2.14}
\end{equation*}
$$

But:

$$
\begin{aligned}
\left|b_{k}\right| & \leq \sum_{0}^{\infty}|\alpha|^{j}\left|-b_{k+j}+\alpha b_{k+j+1}\right| \\
& \leq\left(\sum_{0}^{\infty}|\alpha|^{2 j}\right)^{1 / 2}\left(\sum_{0}^{\infty}\left|-b_{k+j}+\alpha b_{k+j+1}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\frac{1}{1-|\alpha|^{2}}\right)^{1 / 2}\left(\sum_{0}^{\infty}\left|-b_{k+j}+\alpha b_{k+j+1}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

So we deduce from (2.14) :

$$
\left(1-|\alpha|^{2}\right)\left|b_{k}\right|^{2} \leq \sum_{k+1}^{\infty}\left|-b_{j-1}+\alpha b_{j}\right|^{2} \leq 3 \delta^{2} \sum_{0}^{k}\left|b_{j}\right|^{2},
$$

and this implies

$$
\begin{equation*}
\left|b_{k}\right|^{2} \leq \frac{3 \delta^{2}}{1-|\alpha|^{2}-3 \delta^{2}} \sum_{0}^{k-1}\left|b_{j}\right|^{2} \tag{2.15}
\end{equation*}
$$

We also have

$$
\left(\sum_{k+1}^{\infty}\left|-b_{j-1}+\alpha b_{j}\right|^{2}\right)^{1 / 2} \geq(1-|\alpha|)\left(\sum_{k+1}^{\infty}\left|b_{j}\right|^{2}\right)^{1 / 2}
$$

which implies

$$
\begin{equation*}
\sum_{k+1}^{\infty}\left|b_{j}\right|^{2} \leq \frac{3 \delta^{2}}{(1-|\alpha|)^{2}} \sum_{0}^{k}\left|b_{j}\right|^{2} \tag{2.16}
\end{equation*}
$$

Using (2.15), we deduce from (2.16)

$$
\begin{equation*}
\sum_{k+1}^{\infty}\left|b_{j}\right|^{2} \leq \frac{3 \delta^{2}}{(1-|\alpha|)^{2}}\left(1+\frac{3 \delta^{2}}{1-|\alpha|^{2}-3 \delta^{2}}\right) \sum_{0}^{k-1}\left|b_{j}\right|^{2} \tag{2.17}
\end{equation*}
$$

Using (2.15) once again, we finally obtain

$$
\begin{aligned}
\sum_{k}^{\infty}\left|b_{j}\right|^{2} & \leq\left(\frac{3 \delta^{2}}{(1-|\alpha|)^{2}}\left(1+\frac{3 \delta^{2}}{1-|\alpha|^{2}-3 \delta^{2}}\right)+\frac{3 \delta^{2}}{1-|\alpha|^{2}-3 \delta^{2}}\right) \sum_{0}^{k-1}\left|b_{j}\right|^{2} \\
& \leq \frac{6 \delta^{2}}{(1-|\alpha|)\left(1-|\alpha|^{2}-3 \delta^{2}\right.} \sum_{0}^{k-1}\left|b_{j}\right|^{2}
\end{aligned}
$$

from which the Proposition follows immediately.
We can now prove :
Theorem 2.7. - Let f be a function in H^{2}, with the zeros written in increasing order :

$$
\left|\alpha_{1}\right| \leq\left|\alpha_{2}\right| \leq\left|\alpha_{3}\right| \leq \cdots
$$

Then the $k+1$-st zero α_{k+1} satisfies :

$$
\left|\alpha_{k+1}\right| \geq 1-4 \delta^{1 /(k+1)}
$$

with $\delta=\delta_{k}(f)$.
Proof. - The case $k=0$ is left to the reader, and we assume $k \geq 1$. We write

$$
f=\left(\alpha_{1}-z\right) \cdots\left(\alpha_{k}-z\right) g
$$

We first observe that

$$
\begin{equation*}
\left|\alpha_{k+1}\right| \geq \operatorname{cf}_{0}(g) \tag{2.18}
\end{equation*}
$$

Indeed, α_{k+1} is the first zero of g. Jensen's formula gives :

$$
|g(0)| \prod_{\substack{n \geq k+1 \\\left|\alpha_{n}\right| \leq 1}} \frac{1}{\left|\alpha_{n}\right|} \leq M(g) \leq|g|_{2}
$$

but since

$$
\prod_{\substack{n \geq k+1 \\\left|\alpha_{n}\right| \leq 1}} \frac{1}{\left|\alpha_{n}\right|} \geq \frac{1}{\left|\alpha_{k+1}\right|}
$$

we deduce

$$
\left|\alpha_{k+1}\right| \geq \frac{|g(0)|}{|g|_{2}}
$$

as we claimed.
Since $\operatorname{cf}_{0}^{2}(g)=1 /\left(1+\delta_{0}^{2}(g)\right)$, we deduce from (2.18)

$$
\begin{equation*}
1-\left|\alpha_{k+1}\right|<\delta_{0}^{2}(g) \tag{2.19}
\end{equation*}
$$

We consider two cases :

Case 0. $-\left|\alpha_{k}\right| \geq 1-4 \delta^{1 /(k+1)}$.
Then a fortiori $\left|\alpha_{k+1}\right|$ satifies the same estimate, and the theorem is proved, or
Case 1. $-\left|\alpha_{k}\right|<1-4 \delta^{1 /(k+1)}$.
We now consider this last case. Then also $\left|\alpha_{1}\right|, \cdots,\left|\alpha_{k}\right|$ satisfy this estimate, which implies

$$
\begin{equation*}
\delta<\frac{\left(1-\left|\alpha_{k}\right|\right)^{k+1}}{4^{k+1}} \tag{2.20}
\end{equation*}
$$

Set now $f_{1}=f, f_{2}=\left(\alpha_{2}-z\right) \cdots\left(\alpha_{k}-z\right) g, \ldots, f_{k}=\left(\alpha_{k}-z\right) g, f_{k+1}=g$.
Since $\delta<\left(1-\left|\alpha_{1}\right|\right) / 8$, Proposition 2.5 implies

$$
\delta_{k-1}\left(f_{2}\right)<\frac{4 \delta}{1-\left|\alpha_{1}\right|},
$$

and by (2.20),

$$
\frac{4 \delta}{1-\left|\alpha_{1}\right|}<\frac{1-\left|\alpha_{2}\right|}{8}
$$

Therefore, Proposition 2.5 gives

$$
\delta_{k-2}\left(f_{3}\right)<\frac{4 \delta_{k-1}\left(f_{2}\right)}{1-\left|\alpha_{2}\right|}<\frac{4^{2} \delta}{\left(1-\left|\alpha_{1}\right|\right)\left(1-\left|\alpha_{2}\right|\right)} .
$$

Since for every $j=1, \ldots, k$, condition (2.20) implies :

$$
\frac{4^{j-1} \delta}{\left(1-\left|\alpha_{1}\right|\right) \cdots\left(1-\left|\alpha_{j-1}\right|\right)}<\frac{1-\left|\alpha_{j}\right|}{8}
$$

Proposition 2.5 gives

$$
\delta_{k-j}\left(f_{j+1}\right)<\frac{4 \delta_{k-j+1}\left(f_{j}\right)}{1-\left|\alpha_{j}\right|}<\frac{4^{j} \delta}{\left(1-\left|\alpha_{1}\right|\right) \cdots\left(1-\left|\alpha_{j}\right|\right)}
$$

Finally, for $j=k$, we get

$$
\begin{equation*}
\delta_{0}(g)<\frac{4^{k} \delta}{\left(1-\left|\alpha_{1}\right|\right) \cdots\left(1-\left|\alpha_{k}\right|\right)} \leq \frac{4^{k} \delta}{\left(1-\left|\alpha_{k}\right|\right)^{k}} . \tag{2.21}
\end{equation*}
$$

Taking (2.20) into account once again gives :

$$
\delta_{0}(g)<\delta^{1 /(k+1)}
$$

and by (2.19),

$$
1-\left|\alpha_{k+1}\right|<\delta^{2 /(k+1)}<4 \delta^{1 /(k+1)}
$$

and the Theorem is proved.
From these estimates one can easily deduce an asymptotic behavior of $\left|\alpha_{k+1}\right|$ when d is close to 1 :
Corollary 2.8. - When $d \rightarrow 1^{-}$, the $k+1$-st zero of f satisfies :

$$
1-\left|\alpha_{k+1}\right| \sim 4(2(1-d))^{1 / 2(k+1)}
$$

We have investigated, so far, the structure of the set $\{f=0\}$. We now turn to the set $\{|f|<\varepsilon\}$.

