
POLYNOMIALS WITH COMPLEX COEFFICIENTS :

SIZE OF THE FACTORS, REPARTITION OF THE ZEROS.

by Bernard Beauzamy

Institut de Calcul Mathématique
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We deal here with polynomials P (z) =
∑n

0 ajz
j , with complex coefficients, normalized with leading

coefficient 1. We write such a polynomial under the form

P (z) =
n∏
1

(z − zj).

A factor of P is a polynomial Q =
∏

J(z − zj), where J is any subset of {1, . . . , n} . We are interested in
relating the size of coefficients in the factors of P and the repartition of the zeros of P . Upper bounds for
the size of the factors were given by the author in [1] and [2] ; we deal here with lower bounds.

In the first part of the present paper, using a result of Erdös-Turan [3], we show that any polynomial
with zeros on the unit circle has a factor which is exponentially large.

In the second part, we give a symbolic formula, valid in the distribution sense, which allows to reconstruct
the polynomial from the repartition function of its zeros.

1. Size of Factors.

We define the L∞ -norm :
‖P‖∞ = max

θ∈[0,2π]
|P (eiθ)|.

We have :

Theorem 1. – Let P be a polynomial of degree n , with all zeros on the unit circle. Then P has a factor

Q with

‖Q‖∞ ≥ eδn−1 ,

where δ is an absolute constant : δ ∼ 0.00196 .

Proof. – We may assume that ‖P‖∞ = |P (1)| . Let zj = eiθj , j = 1, . . . , n , be the roots of P ; we may
order them :

0 < |θ1| ≤ . . . ≤ |θn| ≤ π,

which implies
|1− z1| ≤ . . . ≤ |1− zn|. (1)

Let Qk = (z − zk+1) · · · (z − zn), Ck = |Qk(1)|/|P (1)| , and C = maxk Ck . Then, for all k = 1, . . . , n ,
1
C

≤ |1− z1| · · · |1− zk|, (2)

which implies by (1) :
1
C

≤ |1− zk|k ,

or
1

C1/k
≤ 2 sin

|θk|
2

≤ |θk|. (3)

We now use a well-known result due to Erdös-Turan [3], which asserts that, if the ratio ‖P‖∞/
√
|a0an|

is not too large, the roots are uniformly distributed in different angles with vertex at O. Precisely, if Nα,β

is the number of roots with arg zj ∈ [α, β] , then :∣∣∣∣Nα,β −
β − α

2π
n

∣∣∣∣ ≤ c

√
n log

‖P‖∞√
|a0an|

;

Erdös-Turan obtained c = 16 ; a value which was improved later by Ganelius [4] :

c =
√

2π/c′ , with c′ =
∫ ∞

1

log t

1 + t2
dt,

that is c ∼ 2.6190.
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By our ordering of the zeros, the sector (|θk|, 2π − |θk|) contains n− k zeros. So∣∣∣∣n− k

n
− 2π − 2|θk|

2π

∣∣∣∣ ≤ c

√
log ‖P‖∞

n
,

which implies

|θk| ≤
πk

n
+ cπ

√
log ‖P‖∞

n
. (4)

Using (3), we get
1

C1/k
≤ πk

n
+ cπ

√
log ‖P‖∞

n
,

or
1
C

≤

(
πk

n
+ cπ

√
log ‖P‖∞

n

)k

. (5)

Let now λ be the positive root of the equation

λ2 = c2eπ(1 + λ).

We choose k =
[

n

eπ(1 + λ)

]
. We consider two cases :

a). ‖P‖∞ ≤ exp

{
λ2n

c2π2e2(1 + λ)2

}
.

Then :

c

√
log ‖P‖∞

n
≤ λ

eπ(1 + λ)
,

and by (5),
1
C

≤
(

πk

n
+

λ

e(1 + λ)

)k

≤ e−k.

Therefore :
C ≥ ek ≥ exp{ n

eπ(1 + λ)
− 1} ,

which shows that there is a factor Q of P with

‖Q‖∞ ≥ exp{ n

eπ(1 + λ)
− 1}‖P‖∞ ≥ exp{ n

eπ(1 + λ)
− 1} .

b). ‖P‖∞ ≥ exp

{
λ2n

c2π2e2(1 + λ)2

}
.

In this case, taking Q = P , we find a factor with

‖Q‖∞ ≥ exp{ λ2n

c2π2e2(1 + λ)2
}.

The choice of λ then gives the result.

We observe that the distinction between cases a) and b) cannot be avoided. In some cases (for instance
P = 1−zn ), the factor Q with largest norm is a true factor of P , in other cases (for instance P = (1+z)n ),
it is P itself. The first occurs when ‖P‖∞ is not too large, the second when ‖P‖∞ is quite large.
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In terms of order of magnitude, our result is best possible, but the constant δ in the statement of the
Theorem is not sharp : we rely on the result of Erdös-Turan, in which the constant c , even after Ganelius’
improvement, was not sharp. It would be reasonable to beleive that the extreme case is that of P = 1− zn ,
with

Q =
5n/6∏
n/6

(z − e2ijπ/n),

that is, the product of those factors with |1− eiθj | ≥ 1, giving the estimate

5n/6∏
n/6

2 sin(jπ/n).

2. Reconstructing a polynomial from the repartition of its zeros.

The result we establish now allows us to reconstruct the polynomial from the repartition function of its
zeros. It gives a converse to the result of Erdös and Turan : if ‖P‖∞/

√
|a0an| is large, the roots are not

uniformly distributed : some sectors receive more than some others, of same size.
We normalize the polynomial as before.
Let µ(x, θ) be the number of zeros of P in the sector {|z| ≤ x , | arg(z)| ≤ |θ|} .
We first establish a symbolic formula.

Theorem 2. – Let P be a polynomial written as in (1) , with P (1) 6= 0 . Then :

log |P (1)| =
∫ +∞

0

∫ π

0

∂2µ

∂x∂θ
log |1− xeiθ| dθdx. (2)

We first explain the meaning to be given to this formula.

Since P (1) 6= 0, there is a small neighborhood of {1} , in the complex plane, with no zero of P :
Vε = {z ; |1− z| ≤ ε} . Let Ω = RI 2

+ \ V +
ε , where RI 2

+ = {z ; Im(z) > 0} , V +
ε = {z ∈ Vε ; Im(z) > 0} . This

is an open set, depending of course of the polynomial.
The function |1 − xeiθ|2 = 1 + x2 − 2x cos θ does not vanish in Ω, so log |1 − xeiθ| is C∞ in Ω, and

also is C∞(Ω̄) .
We observe that µ(x, θ) = 0 on Vε , and is a measurable bounded function on Ω̄. Let R be large

enough, so that all roots zj satisfy |zj | ≤ R . Then, for any θ , µ(x, θ) is constant for x > R .
Being bounded and measurable, the function µ(x, θ) defines a distribution in the space D′(Ω), and so

has a derivative, in the distribution sense, ∂µ
∂x (x, θ). This derivative is compactly supported in Ω, by what

we just said. Also, obviously, ∂2µ
∂x∂θ is compactly supported in Ω, and therefore belongs to E ′(Ω̄) , space of

distributions on RI 2 , with compact support K ⊂ Ω̄ .
There is a canonical duality between E ′(Ω̄) and E(Ω̄) = C∞(Ω̄) , and by this duality, the action :

〈 ∂2µ

∂x∂θ
, log |1− xeiθ| 〉 (3)

makes sense. Formula (2) is the symbolic notation for (3).
We now turn to the proof of the Theorem.

First, we observe that we may assume that all zeros lie in the upper half- plane. Indeed, |P (1)| =∏
|1− zj | =

∏
|1− z̄j | , so we may replace zj by its conjugate if necessary.

We may also assume that P has no zero at O , since a zero at O does not affect P (1), nor ∂2µ
∂x∂θ .
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Finally, we may assume that P has no zero on the real axis. Indeed, let z1 , . . . , zp be the zeros on
the real axis, zp+1 , . . . , zn the others. For k ≥ 1, let Pk be the polynomial with zeros λ1 = z1e

i/k , . . . ,
λp = zpe

i/k , zp+1 , . . . , zn . Then Pk has no zero on the real axis. Obviously, when k →∞ , |Pk(1)| → |P (1)| .
Let µk be the corresponding function for Pk . We will see that

∂2µk

∂x∂θ
→ ∂2µ

∂x∂θ
, when k →∞ , in E ′(Ω̄). (4)

To prove (4), its enough to do it when P is a monomial, P = z − λ , with λ real, say λ > 0. Then λ is
replaced by λei/k , and µk = 1 if x ≥ λ and θ ≥ 1/k , 0 otherwise.

Let φ ∈ E(Ω̄) . Then :

〈 ∂
2µk

∂x∂θ
, φ〉 = 〈µk,

∂2φ

∂x∂θ
〉

=
∫ +∞

λ

∫ π

1/k

∂2φ

∂x∂θ
dxdθ

= −
∫ π

1/k

∂φ

∂θ
(λ, θ)dθ

= − φ(λ, π) + φ(λ, 1/k)

and when k →∞ , this last quantity tends to

−φ(λ, π) + φ(λ, 0) = 〈 ∂2µ

∂x∂θ
, φ〉.

So we now prove formula (2) when all zeros satisfy Im(zj) > 0.

Since |P (1)| =
∏
|1− zj | , we have, denoting by δz the Dirac measure at the point z ,

log |P (1)| =
∑

j

log |1− zj | =
∑

j

〈δzj , log |1− z|〉 , (5)

in the duality E ′(Ω), E(Ω).
For ζ ∈ CI with Im(ζ) > 0, set arg ζ = α and consider the sector function :

Sζ(z) = 1 if {|z| ≥ |ζ| and arg(z) ≥ α} , = 0 otherwise.

This is the equivalent, in the complex plane, of the Heaviside function on the line, and it has a Dirac measure
as a derivative. Indeed, let’s compute ∂2Sζ

∂x∂θ in D′(Ω). If φ ∈ D(Ω), we have :

〈 ∂2Sζ

∂x∂θ
, φ〉 = 〈Sζ ,

∂2φ

∂x∂θ
〉

=
∫ ∞

0

∫ π

0

Sζ
∂2φ

∂x∂θ
dxdθ

=
∫ ∞

|ζ|

∫ π

α

∂2φ

∂x∂θ
dxdθ

= φ(|ζ|, α)− φ(|ζ|, π).

But φ(|ζ|, π) = 0 since φ ∈ D(Ω), so we obtain :

∂2Sζ

∂x∂θ
= δζ ,

as we announced.
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Let’s come back to the polynomial. We have :

µ(x, θ) =
n∑
1

Szj (x, θ),

which gives :
∂2µ

∂x∂θ
=

n∑
1

δzj
,

substituting in formula (5) gives the result.

Theorem 2 can be translated into a result using only the function µ(x, θ) itself, and not its derivatives
anymore. Let R be, as before, the radius of any disk, centered at O , containing all the zeros of P . Then :

Theorem 3. – Let P be a polynomial written as in (1), with P (1) 6= 0 . Then :

log |P (1)| =
∫ R

0

∫ π

0

µ(x, θ)(1− x2)
sin θ

|1− xeiθ|4
dxdθ

−
∫ π

0

µ(R, θ)
R sin θ

|1−Reiθ|2
dθ −

∫ R

0

µ(x, 0)
1− x

dx−
∫ R

0

µ(x, π)
1 + x

dx

− µ(R, 0) log |1−R|+ n log(1 + R).

Proof. – The result is deduced from Theorem 2 after two integrations by parts. In order to justify them, we
observe that the distribution ∂2µ

∂x∂θ has its support in D(O,R) ; the integration would be justified if, instead
of log |1− xeiθ| we had a function φ(x, θ) with compact support in D(O,R) ∩ Ω.

So, for ε > 0, we take two functions gε(x) and hε(θ), with gε ∈ D(]0, R[) , hε ∈ D(]0, π[) , 0 ≤
gε ≤ 1, 0 ≤ hε ≤ 1, and gε = 1 on [ε, R − ε] , hε = 1 on [ε, π − ε] . We then replace log |1 − xeiθ| by
gε(x)hε(θ) log |1− xeiθ| , and we can now perform the integration by parts. We finally let ε → 0.

The meaning of Theorem 3 is especially simple for polynomials having all their zeros on the unit circle.
For such a polynomial, we put ν(θ) = µ(1, θ), 0 ≤ θ ≤ π : this is the number of zeros satisfying | arg z| ≤ θ .
Then :

Theorem 4. – Let P (z) =
∏n

1 (z − zj) be a polynomial with all zeros on the unit circle and P (1) 6= 0 .

Then :

log |P (1)| = −1
2

∫ π

0

ν(θ) cot(θ/2) dθ + n log 2.

This formula implies a reciprocal to the result of Erdös and Turan mentioned above. Indeed, it shows
that if |P (1)| is large, not too many zeros can be too close to 1, and thus there is an angular sector which
receives less zeros than it would, if the zeros were equidistributed. Precisely, we have :

Proposition 5. – Let P be as in Theorem 4. Then, for every α ∈ [0, π] ,

ν(α) ≤ log |P (1)| − n log 2
log sin(α/2)

.

Proof. – We just write, using Theorem 4 :

ν(α)
∫ π

α

cot(θ/2) dθ ≤
∫ π

α

ν(θ) cot(θ/2) dθ ≤ 2 log
2n

|P (1)|
.

If the roots were equidistributed, the number in the sector |θ| ≤ α would be αn/π . But we have

log(2n/|P (1)|)
log 1/ sin(α/2)

<
αn

π
,

if, for given α , |P (1)| is large enough.
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Let’s take an example. Let P (z) satisfy ‖P‖∞ ≥ 23n/4 . Then Proposition 5 shows that the number
of zeros in the sector |θ| ≤ π/3 is smaller than n/4 ; in case of equirepartition, it would be n/3.

Let’s give a second application of Theorem 4 :

Proposition 6. – Assume that P is as in Theorem 4, the roots written in the order of |θk| increasing.

Then, for all k = 1, . . . , n ,
|P (1)|1/k

2n/k
≤ sin(|θk|/2) .

Proof. – We observe that ν(θk) = k , for all k = 1, . . . , n . So we have :∫ π

0

ν(θ) cot(θ/2)dθ ≥
∫ π

|θk|
ν(θ) cot(θ/2)dθ

≥ k

∫ π

|θk|
cot(θ/2)dθ

≥ − 2k log sin(|θk|/2),

and therefore,
log |P (1)| ≤ k log sin(|θk|/2) + n log 2,

which gives our formula.

This Proposition shows that if |P (1)| is large, |θk|/2 must be close to π/2, or |θk| close to π , which
means that most roots are close to −1.

A formula, similar to that of Theorem 4, holds for polynomials having all their zeros in the interval
[−1, 1[ of the real axis. For −1 ≤ x < 1, let µ(x) be the number of zeros in the interval [x, 1[. Then :

log |P (1)| = −
∫ 1

−1

µ(x)
1− x

dx + n log 2.
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