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Let P = a0 +a1z+a2z
2 + · · · be a polynomial with complex coefficients, and let d , 0 < d < 1, k ∈ NI .

We say that P has concentration d at degrees at most k if :

k∑
0

|aj | ≥ d
∑
j≥0

|aj | (1)

Other ways of measuring such a concentration can be expressed. For instance,

(
k∑
0

|aj |2)1/2 ≥ d(
∑
j≥0

|aj |2)1/2 (2)

or :
k∑
0

|aj | ≥ d‖P‖∞ (3)

where ‖P‖∞ = maxθ |P (eiθ)| .

The last one is of course more general, since both (1) and (2) imply (3).

This concept was originally introduced by P. Enflo and the author [1], who proved, for a polynomial
satisfying (3), a generalized Jensen’s Inequality :

There exists a constant C(d, k) such that, for any polynomial satisfying (3),∫ 2π

0

log(
|P (eiθ)|
‖P‖∞

)
dθ

2π
≥ C(d, k) (4)

(actually the proof is given in [1] only under assumption (2) ; it was given under assumption (3) by the
present author in [2], but there is no conceptual difference.)
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The precise value of C(d, k) is unknown. Asymptotic estimates, when k → +∞ , were given by the
present author in [2], where was proved that, asymptotically, C(d, k) ≥ −2k , and that the best constant
C(d, k) satisfies, for d = 1/2, the estimate C(1/2, k) ≤ −2k log 2.

After normalization, and denoting |P |1 =
∑
|aj | , the problem related to condition (1) becomes :

inf{
∫ 2π

0

log(
|P (eiθ)|
|P |1

)
dθ

2π
; P satisfies (1)} (5)

This problem was completely solved by A. Rigler, S. Trimble and R.S. Varga [4] for the class of the Hurwitz
polynomials. These polynomials have real, positive coefficients, all roots are either real negative, or pairwise
conjugate, with negative real parts.

In the special case d = 1/2, the constant they find is precisely −2k log 2 ; the polynomials for which
it is reached being of the form ( z+1

2 )2k . But outside this class of polynomials, nothing is known about the
precise value of C(d, k), even for small values of k .

Here, we deal with the problem connected with inequality (3), and solve it completely for k = 1. We
recall that for k = 0, the result reduces to the classical Jensen’s Inequality, so the infimum is just d . The
natural setting for this problem is not that of polynomials, but that of H∞ functions, for which (3) also
makes sense. So, finally, what we study is :

inf{
∫ 2π

0

log(
|f(eiθ)|
‖f‖∞

)
dθ

2π
; f ∈ H∞ and f satisfies (3)} (6)

Theorem 1. – For k = 1 , the solution of Problem 6 is the unique number c < 0 , solution of the equation :

ec (1− 2c) = d

There are no functions for which the infimum is actually attained. A sequence of functions Fn realizing the

infimum better and better, that is satisfying

‖Fn‖∞ = 1 ;
∫

log |Fn| → c, n →∞

is of the following type : the Fn ’s are outer functions, and if they are written under the form :

Fn(z) = exp

∫ 2π

0

eit + z

eit − z
un(t)

dt

2π

then un is real ≤ 0 ,
∫ 2π

0
un(t) dt

2π = c , and the un ’s are more and more concentrated near 0 : for every

ε > 0 ,
∫
|t|>ε

un(t)dt → 0 , when n → +∞

Proof of Theorem 1.– We are going to make heavy use of the canonical decomposition of any function
in Hp (here H∞ ) :

f = B.S.F , (7)

where B is a Blaschke factor, S is a singular function, and F an outer function (with, here, F ∈ H∞). We
refer, for instance, to the book by Hoffmann [3] for the basic facts about this decomposition.

For an analytic function f = a0 + a1z + a2z
2 + · · · , we put π(f) = a0 + a1z .

Our proof is divided into three parts. First, we remove the Blaschke product in the decomposition (7),
then the singular part, and finally we deal with the outer part.
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1) First step : removal of the Blaschke product.

This is obtained by means of the following :

Proposition 2. – The Infimum in Problem (6) is the same if we restrict ourselves to functions f which

have no Blaschke factor in their canonical decomposition (7).

The proof of Proposition 2 itself will be done in several steps, making repeated use of the following
Lemma :

Lemma 3. – Let f = b0 + b1z + · · · , and B0 = ā
|a|

a−z
1−āz , with |a| < 1 , be a Blaschke factor. If

|π(fB0)|1 ≥ d,

then, either |b0| ≥ d/2 , or |π(f)|1 ≥ d .

Proof of Lemma 3.– We have

|π(fB0)|1 = |b0a|+ |b1|a| −
b0ā

|a|
(1− |a|2)|

≤ |b0||a|+ |b1||a|+ |b0|(1− |a|2)

For the simplicity of notations, we may therefore assume that a, b0, b1 are real positive. Put :

φ(a) = −b0a
2 + a(b0 + b1) + b0

Then φ(a) reaches its maximum for a0 = (b0 + b1)/2b0 . Two cases may occur :
- either a0 ≥ 1. Since φ(a) is strictly increasing between 0 and 1, the maximum of φ on [0,1] is reached

at a = 1. So we get :
b0 + b1 ≥ d.

- or a0 ≤ 1. This means that (b0 + b1)/2b0 < 1, or b1 < b0 .
The maximum value of φ , obtained for a = a0 , is therefore :

(b0 + b1)2

4b0
+ b0 ≤ 2b0

so b0 ≥ d/2, and Lemma 3 is proved.

We now prove Proposition 2. Let B =
∏

j
āj

|aj |
aj−z
1−ājz be a Blaschke product (with

∑
(1 − |aj |) < ∞).

We put :

Bj(z) =
āj

|aj |
aj − z

1− ājz

Then |Bj(eiθ)| = 1 for every θ . We look at f.B and assume that :

|π(f.B)|1 ≥ d ‖f.B‖∞ = d ‖f‖∞

We put f1 = f
∏

j≥2 Bj , so f = f1.B1 . By Lemma 3, either :
a) |π(f)|1 ≥ d‖f‖∞ , or
b) |f1(0)| ≥ d

2‖f‖∞ .

In the second case, classical Jensen’s Inequality gives :∫ 2π

0

log
|f1(eiθ)|
‖f‖∞

dθ

2π
≥ log

d

2

and it will follow from Proposition 6 below that the infimum in Problem (6) cannot be achieved by f1 . So
we are left with case a), and we start again with f2 = f.B3.B4 . . . .
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Let now fn = f.Bn.Bn+1 . . . . Cases a) and b) are defined as previously. If at any step we fall into case
b), we get the estimate log d

2 , which is greater than that of Proposition 6 below, and therefore fn (and f )
is not suitable for the infimum in (6).So we are left with the case where all fn ’s fall into case a).

Put g = S.F in the canonical decomposition (7). Then |f | = |g| a.e., and obvious computations (using
the fact that

∑
j≥n(1 − |aj |) → 0 when n → ∞) show that |π(fn)|1 → |π(g)|1 . So the estimate given by

g in (6) is the same as the estimate given by f , and we are left with a function without Blaschke product.
So, Proposition 2 is proved (admitting temporarily Proposition 6 below).

2) Second Step : Removal of the singular function.

The argument is of the same nature as previously, though computations are of course different.

Proposition 4. – The infimum in Problem 6 is the same if we restrict ourselves to outer functions.

Proof. – We need a Lemma, similar to Lemma 3 :

Lemma 5. – Let S be a singular function, and f = b0 + b1z + · · · in H∞ . If |π(f.S)|1 ≥ d , then either

|b0| ≥ d/2 , or |π(f)|1 ≥ d

Proof of Lemma 5.– We write a singular function :

S(z) = exp{−
∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)}

where µ is a positive measure, singular with respect to Lebesgue measure (see e.g. Hoffmann [3], p.66). We
know that |S(eiθ)| = 1 a.e.

We put cj =
∫ 2π

0
eijθdµ(θ) ; they are the Fourier coefficients of µ . Then :

S(0) = exp{−
∫

dµ(θ)} = e−c0 ,

S′(0) = −2c1e
−c0 .

So :
π(f.S) = b0e

−c0 + z(−2c1e
−c0b0 + b1e

−c0) ,

|π(f.S)|1 = e−c0 |b0|+ e−c0 | − 2c1b0 + b1|
≤ e−c0 [|b0|+ 2|c1||b0|+ |b1|]

Again, we may now assume b0 , b1 , c1 to be real positive (c0 is automatically real positive). Since |c1| ≤ c0 ,
our assumption implies :

d ≤ e−c0(b0 + 2b0c0 + b1) (8)

With t = c0 , we put :
φ(t) = e−t(b0 + b1 + 2b0t).

Then φ′(t) = −(2b0t + b1 − b0)e−t , and φ takes its maximum at (b0 − b1)/2b0 . We have two cases :
- either b0 − b1 ≥ 0,
Then φ reaches its maximum on [0,∞[ at the point (b0 − b1)/2b0 . The value of this maximum is

2b0exp((b1 − b0)/2b0) ≤ 2b0 , and therefore b0 ≤ d/2.
- or b0 − b1 ≤ 0,
Then φ reaches its maximum on [0,∞[ at the point t = 0. The value of this maximum is b0 + b1 , so

b0 + b1 ≥ d .
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This proves our Lemma. Proposition 4 now follows easily : let f = S.F , where S is singular and F

outer. Then if :
|π(S.F )| ≥ d‖S.F‖∞ = d‖F‖∞

then either |F (0)| ≥ d
2‖F‖∞ , so

∫
log(|F |/‖F‖∞) ≥ log(d/2) and the infimum will not be attained at F by

Proposition 6 below, or
|π(F )|1 ≥ d‖F‖∞,

and we have removed the singular part S in g .

3) Step 3 : The minimization problem for outer functions.

We now study Problem (6), assuming F to be in H∞ and outer. Then F can be written :

F (z) = exp

∫ 2π

0

eiθ + z

eiθ − z
log k(θ)

dθ

2π

where k(θ) is real, > 0, and
∫
| log k(θ)| < ∞ .

We may assume ‖F‖∞ = 1. Since |F (eiθ)| = k(θ) a.e., we know that k(θ) ≤ 1 a.e., so log k(θ) ≤ 0 a.e.

Put u(θ) = log k(θ). Then u is a real function, integrable, and ≤ 0 a.e. We now compute the first two
coefficients of F :

F ′(z) = F (z)
∫ 2π

0

2eiθ

(eiθ − z)2
u(θ)

dθ

2π

We put cj =
∫ 2π

0
e−ijθu(θ) dθ

2π . So we get :

F (0) = exp

∫
u(θ)

dθ

2π
= ec0

F ′(0) = 2ec0

∫
e−iθu(θ)

dθ

2π
= 2c1e

c0

We know that, for an outer function, Jensen’s Inequality is actually an equality ([4], p.62), so, since ‖F‖∞ =
1, we get : ∫ 2π

0

log |F (eiθ)| dθ

2π
= c0

Our problem may now be rephrased :
“Find the minimum of c0 , assuming ec0(1 + 2|c1|) ≥ d , where c0 , c1 , are Fourier coefficients of a real,

negative, integrable function. ” (9)

Since ec0 ≥ d/(1 + 2|c1|), the minimum of c0 will be obtained by giving to |c1| the largest possible
value. But :

|c1| = |
∫

e−iθu(θ)
dθ

2π
| ≤ −

∫
u(θ)

dθ

2π

Fix now ε > 0. There are functions u(θ) such that |c1| ≥ (1 − ε) − c0 . Indeed, a function u < 0, with
support in [−η, η] , for η > 0 small enough, will have this property.

So, for each ε > 0, the solution of our problem is among the c0 for which ec0(1 − 2(1 − ε)c0) ≥ d .
Letting ε → 0, we find that the solution of our problem is the smallest value of c0 < 0 for which :

ec0(1− 2c0) ≥ d

that is, the unique solution of the equation

ec(1− 2c) = d (10)

This finishes the study in Step 3. In order to prove our Theorem, all we have to do now is to compare the
solution of equation (10) to the estimate which we obtained in Propositions 2 and 4 :
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Proposition 6. – The solution of equation (10) is strictly smaller than log(d/2) .

Proof of Proposition 6.– All we have to show is that :

elog(d/2)(1− 2 log(d/2)) > d

and this follows easily from the estimate log(d/2) < −1/2.

This concludes the proof of Theorem 1. Numerically, for d = 1/2, one finds c0 = −2.4773, and this
value is smaller than the value −2 log 2 obtained in [4] for Problem (5).

Similar reasoning can be made in the case k > 1, and Steps 1, 2 can be carried over. The main difficulty
is Problem (9), which can be stated for more general k ’s : we have not been able to find a description of the
solution, valid for all values of k .

This work was done when the author visited the Institute for Computational Mathematics, Kent State
University. Many thanks are due to the I.C.M. for its nice hospitality. The author benefitted from many
conversations with Prof. Richard Varga about these matters. Also, though it does not appear in the
final form, the MACSYMA system was heavily used to get some insight about the functions involved, the
optimisation problems, etc. Therefore, thanks are also due to Prof. Paul Wang for his help about the
MACSYMA features.
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21, no 3, (1985), pp.390-412.

[2] Beauzamy, B. : Jensen’s Inequality for polynomials with concentration at low degrees. Numerische
Math., 49, (1986), pp. 221-225.

[3] Hoffmann, K. : Banach Spaces of Analytic Functions. prentice Hall, 1966.

[4] Rigler, A. K., Trimble, S. Y., and Varga, R. S. : Sharp lower bounds for a generalized Jensen
Inequality. To appear in Rocky Mountain J. of Maths, 1987.

6


