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Université de Paris 7

2 place Jussieu
75251 Paris Cedex 05 - France

Abstract. – For an homogeneous polynomial P in N variables, x1, · · · , xN , of degree k , the leading
terms are those which contain only one variable, raised to the power k . If 0 ≤ P ≤ 1 when all variables
satisfy 0 ≤ xj ≤ 1, how large can the leading coefficients be ? Estimates were given in [1] by Aron -
Beauzamy - Enflo ; we improve these estimates in general and solve the problem completely for k = 2 and
3.

Symbolic Computation (MAPLE on a Digital DecStation 5000) was heavily used at two levels : first in
order to get a preliminary intuition on the concepts discussed here, and second, as symbolic manipulation
on polynomials, in most proofs.

Numerical analysis was made on a Connection Machine CM2, using the hypercube representation ob-
tained by Beauzamy - Frot - Millour [2] .
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Let

P (x1, . . . , xN ) =
∑
|α|=k

aαxα1
1 · · ·xαN

N ,

with α = (α1, . . . , αN ), |α| = α1 + · · · + αN , be an homogeneous polynomial of degree k in N variables
x1, . . . , xN .

As already done by Aron - Beauzamy - Enflo in [1] , among all coefficients aα , we distinguish the leading
ones, denoted by al ( l = 1, . . . , N ) : al is the coefficient of the sole variable xl , raised to the power k .
So the leading terms are those which contain just one variable, raised to the power k (this terminology is
of course inspired by the one-variable situation). All other terms contain at least two variables, and the
polynomial can be written

P (x1, . . . , xN ) =
N∑

l=1

alx
k
l +

∑
|β|=k

aβxβ1
1 · · ·xβN

N , (1)

where in the last term all β ’s have at least two non-zero components.

The question raised in [1] is the following : if we know
∑N

l=1 |al| , can we find a lower bound for
max

0≤xj≤1
|P (x1, · · · , xN )| ?

The reason for this question, explained in [1] , is that such a result allows to decrease the number of
terms in the polynomial one needs to consider : in order to find a lower bound for max

0≤xj≤1
|P (x1, · · · , xN )|

(a quantity which depends on all terms in P ), one needs only to consider the a′ls , which represent only N

terms.

In [1] was shown that
N∑
1

|al| ≤ Ck max
0≤xj≤1

|P (x1, · · · , xN )| (3)

with Ck ≤ 4k2 , and that the best Ck must satisfy Ck ≥ k .

We will obtain estimates for Ck from below by an iterative procedure (at each step, replacing the
variable by a previously obtained polynomial), and this iterative procedure will require 0 ≤ P ≤ 1 when all
variables satisfy 0 ≤ xj ≤ 1 (and not just |P | ≤ 1). For this technical reason, we investigate :

Bk = sup

{
N∑

l=1

|al| ; P as in (1), 0 ≤ P ≤ 1 if 0 ≤ xj ≤ 1, j = 1, . . . , N ; N = 1, 2, . . .

}
(4)

and we want to find a lower bound for Bk . We write |P |lead instead of
∑N

l=1 |al| .

Our main result is :

Theorem 1. – For k ≥ 2 , the following estimates hold :

B2 ≥ 4 , B3 ≥ 9 , and for k ≥ 3 ,

Bk ≥ klog 6/ log 3 .

Each of these estimates requires the production of a corresponding polynomial. The techniques are
different in each case.
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Proposition 2. – The polynomial in N variables, homogeneous of degree 2 :

P (x1, . . . , xN ) = A

x2
1 + · · ·+ x2

N

N
− 2

N(N − 1)

∑
i<j

xixj

 ,

with A = 4(N − 1)/N if N is even, A = 4N/(N + 1) if N is odd, satisfies 0 ≤ P ≤ 1 if all xj ’s satisfy

0 ≤ xj ≤ 1 .

Proof of Proposition 2.

– Let’s first show that P ≥ 0, that is :

2
N(N − 1)

∑
i<j

xixj ≤ 1
N

(x2
1 + · · ·+ x2

N )

or

1
N(N − 1)

∑
i 6=j

xixj +
∑

i

x2
i

 ≤
(

1
N

+
1

N(N − 1)

)∑
i

x2
i ,

which is equivalent to

1
N

(∑
i

xi

)2

≤
∑

i

x2
i ,

a consequence of Hölder’s inequality.

– Let’s now show that P ≤ 1. Since P is a convex function of each xj , it’s enough to show it when
xj = 0 or 1.

Let’s assume that K of the xj ’s are 1, N −K are 0.

The condition P ≤ 1 reads

A

(
K

N
− 2

N(N − 1)
K(K − 1)

2

)
≤ 1,

or

A
K(N −K)
N(N − 1)

≤ 1 .

The maximum of
K(N −K)
N(N − 1)

is reached for K ∼ N/2. More precisely, if N is even, N = 2M , it is

obtained for K = M , and gives
N

4(N − 1)
, and if N = 2M +1, it is obtained for K = M , and gives

N + 1
4N

.

The values of A follow.

This gives the required estimate for B2 in Theorem 1. We observe that the maximum is not obtained
for a fixed number of variables, but letting N → +∞ .

We now turn to the case of degree 3 :

Proposition 3. – The polynomial

P (x1, . . . , xN ) = A

N∑
1

x3
i −B

∑
i 6=j

x2
i xj + C

∑
i<j<k

xixjxk , (5)

2



with

A =
1

N3
(3N − 4)2,

B =
8

N3
(3N − 6),

C =
96
N3

,

satisfies 0 ≤ P ≤ 1 when all xj ’s satisfy 0 ≤ xj ≤ 1 .

Assuming this result, we see that the estimate for B3 follows : indeed, when N → +∞ , |P |lead → 9.
But here again, the maximum is not reached for any prescribed number of variables.

Proof of Proposition 3.

We take P under the form (5) and compute the values of A , B , C , so it has the required properties.
First, we study the case where K of the variables xj take the value 1, and N − K take the value 0
(0 ≤ K ≤ N ). We set

ϕ(K) = P (1, . . . , 1︸ ︷︷ ︸
K times

, 0, . . . , 0)

and so :
ϕ(K) = AK −BK(K − 1) +

C

6
K(K − 1)(K − 2). (6)

We will choose A , B , C , such that 0 ≤ ϕ(K) ≤ 1 for K = 0, . . . , N , and with A as large as possible
since |P |lead = AN .

The polynomial ϕ(x) must vanish at 0, must satisfy 0 ≤ ϕ(x) ≤ 1 if x ∈ [0, N ] , and we want ϕ(1) to
be as large as possible. Therefore, we will require ϕ to have a double zero α , 0 ≤ α ≤ N (which ensures
ϕ(x) ≥ 0, 0 ≤ x ≤ N ), and we prescribe ϕ(x) to be of the form

ϕ(x) = γx(x− α)2, (7)

where 0 ≤ α ≤ N , and γ > 0 have to be chosen. Then clearly ϕ(K) ≥ 0 for all K ≥ 0, and by a result of
Choi - Lam - Reznick ([3], theorem 3.7), since deg P ≤ 3, this implies that P ≥ 0 when xj ≥ 0.

We have
ϕ′(x) = γ (x− α)(3x− α),

and so, in order to impose ϕ(x) ≤ 1, 0 ≤ x ≤ N , all we have to require is ϕ(α/3) ≤ 1, ϕ(N) ≤ 1, that is{
2γα3/27 ≤ 1

γN(N − α)2 ≤ 1

We put α = λN (0 < λ < 1), and we obtain{
4γλ3N3/27 ≤ 1

γN3(1− λ)2 ≤ 1
(8)

But ϕ(1) = γ(1 − α)2 = γ(1 − λN)2 is an increasing function of γ . So ϕ(1) will be maximal if both
inequalities in (8) are equalities. Solving in λ , MAPLE gets(

λ

3

)3

=
(

1− λ

2

)2

and finds the solutions λ = 3/4, 3, 3.
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This gives α = 3N/4, γ = 16/N3 , and

ϕ(x) =
16
N3

x(x− 3
4
N)2.

The values of A , B , C , are now deduced from the system :

ϕ(1) = A , ϕ(2) = 2A− 2B , C = 6γ,

easily solved by MAPLE.

We now show that P ≤ 1 when all xj are ≤ 1.
For this, we first observe that P can be written as :

P (x1, . . . , xN ) =
9
N

N∑
1

x3
i −

24
N2

(
N∑
1

x2
i

)(
N∑
1

xi

)
+

16
N3

(
N∑
1

xi

)3

. (9)

To simplify our notation, we put

m1 =
1
N

N∑
1

xi , m2 =
1
N

N∑
1

x2
i , m3 =

1
N

N∑
1

x3
i ,

and P becomes
P = 9m1 − 24m1m2 + 16m3.

We have :

Lemma 4. – Let P be a symmetric polynomial of degree 3, written as :

P = am3 + bm1m2 + cm3
1,

where a + b + c ≤ 1 , 3a + b ≥ 0 , 2b + 3c ≥ 0 . Then, if P ≥ 0 when all xi ≥ 0 , P automatically satisfies

P ≥ 1 when 0 ≤ xi ≤ 1 .

Proof of Lemma 4. – We set xi = 1− ti . If xi ≤ 1, ti ≥ 0, and with the notation

µ1 =
1
N

N∑
1

ti , µ2 =
1
N

N∑
1

t2i , µ3 =
1
N

N∑
1

t3i ,

P becomes :

P = −(aµ3 + bµ1µ2 + cµ3
1) + a + b + c− 3µ1(a + b + c) + µ2(3a + b) + µ2

1(2b + 3c).

Since aµ3 + bµ1µ2 + cµ3
1 ≥ 0, the condition P ≤ 1 will be satisfied as soon as :

a + b + c− 3µ1(a + b + c) + µ2(3a + b) + µ2
1(2b + 3c) ≤ 1.

But µ2 ≤ µ1 , 3a + b ≥ 0, so this inequality holds if

a + b + c− µ1(1− µ1)(2b + 3c) ≤ 1,

which is satisfied by assumption. This proves Lemma 4, and finishes the proof of the Theorem in the case
k = 3.
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Remark. – If we put

Q(x1, . . . , x2N ) = P (x1, . . . , xN )− P (xN+1, . . . , x2N ),

we find that |Q(x1, . . . , x2N )| ≤ 1 if 0 ≤ xj ≤ 1, and |Q|lead → 18 when N → +∞ .
So the best constant C3 in the inequality

|Q|lead ≤ Ck sup
0≤xj≤1

|Q(x1, · · · , xN )|

satisfies C3 ≥ 18 ; Theorem 1.2 in [1] shows that Ck ≤ 4k2 .

Can this construction of P , with large leading coefficients, be carried over for k > 3 ? We don’t know.
Following the same pattern would require :

– finding a polynomial ϕ(x) of degree K , in one variable, with 0 ≤ ϕ(x) ≤ 1 if 0 ≤ x ≤ N , and ϕ(1)
as large as possible,

– identifying the many-variable polynomial P (x1, . . . , xN ), homogeneous of degree k , with first term
A
∑N

1 xk
i , such that

P (1, . . . , 1︸ ︷︷ ︸
j times

, 0, . . . , 0) = ϕ(j),

for j = 0, . . . , N ,
– Proving that 0 ≤ P ≤ 1 if all xj ’s satisfy 0 ≤ xj ≤ 1.
The first two steps are not very hard to perform, but the last one -proving that 0 ≤ P ≤ 1- does not

seem within our reach at present. Of course, the result of Choi- Lam-Reznick we have used is not valid
for k ≥ 3, but this is not the main point : our proof, for k = 3, only uses this result for simplicity (our
original proof did not). The main point is that no tool is presently known, ensuring that a many- variable
polynomial, of degree k > 3, satisfies 0 ≤ P ≤ 1 when all xi satisfy 0 ≤ xi ≤ 1.

Since this problem cannot be solved, we have two possibilities. The first one is to build P , with
0 ≤ P ≤ 1, by some iterative procedure from a known polynomial : this will lead to the estimate for Bk in
Theorem 1. These estimates are not in k2 as we would like, but they are better than anything previously
known.

The second one will be to change the norm, and replace

sup
0≤xj≤1

|P (x1, . . . , xN )|

by the quantity
sup

xj=0,1
|P (x1, . . . , xN )|,

which will be discussed at the end of the paper.
We now turn to the iterative procedure in order to estimate Bk .

Proposition 5. – Assume we can find a polynomial P0 , with N0 variables, homogeneous of degree k0 ,

with the properties :

– all leading coefficients are 1,

– if all xj satisfy 0 ≤ xj ≤ 1 , then 0 ≤ P0 ≤ 1 .
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Then Bk ≥ klog N0/ log k0 , for all k of the form k = kj
0 , j ∈ NI .

Proof of Proposition 5.– By assumption |P0|lead = N and 0 ≤ P0 ≤ 1 if all xj ∈ [0, 1]. Set P1 = P0 , and

P2 = P0

(
P1(x1, . . . , xN0), P1(xNO+1, . . . , x2N0), . . . , P1(x(N0−1)N0+1, . . . , xN2

0
)
)

.

So P2 has N2
0 variables, |P2|lead = N2 , deg P2 = k2

0 , and 0 ≤ P2 ≤ 1 if xi ∈ [0, 1].
Assume Pj−1 has been defined, with N j−1

0 variables, deg Pj−1 = kj−1 , and 0 ≤ Pj−1 ≤ 1 if xi ∈ [0, 1].
Set :

Pj = P0

(
Pj−1(x1, . . . , xNj−1

O
), . . . , Pj−1(x(N0−1)Nj−1

0 +1, . . . , xNj
0
)
)

.

So Pj has N j
0 variables, |Pj |lead = N j

0 , deg Pj = kj
0 , and 0 ≤ Pj ≤ 1 if xi ∈ [0, 1].

Set k = deg Pj . Then :
N j

0 ≤ Bk.

But k = kj
0 , j = log k/ log k0 , and

Bk ≥ N
log k/ log k0
0 = klog N0/ log k0 ,

as we announced. This proves Proposition 5.

We observe that, in order to be applied, this inductive procedure requires a polynomial with leading
coefficients all equal to 1, and this is not the case of the ones we have exhibited so far.

So we will prove :

Proposition 6. – The polynomial in 6 variables, with 56 terms :

P0(x1, . . . , x6) =
6∑
1

x3
i −

1
2

∑
i 6=j

x2
i xj +

1
2

∑
i<j<k

xixjxk (10)

satisfies 0 ≤ P0 ≤ 1 if xi ∈ [0, 1] .

This proposition, producing a polynomial of degree 3 with 6 variables, gives the estimate klog 6/ log 3 in
Theorem 1. It improves upon the estimate klog 3/ log 2 , obtained by A.Tonge from the consideration of the
polynomial

P0(x, y, z) = x2 + y2 + z2 − xy − yz − zx,

which also satisfies 0 ≤ P0 ≤ 1 if x, y, z ∈ [0, 1].

Before proving Propostion 6, we will state :

Proposition 7. – The polynomial P0 defined in (10) is, among all polynomials of degree 3 with leading

coefficients 1, with 6 variables, the only one which may satisfy 0 ≤ P0 ≤ 1 if all xi ∈ [0, 1] . There is no such

polynomial with 7 variables.

Proof of Proposition 7.– We consider any degree 3 polynomial with N variables, of the form :

P =
N∑
1

x3
i − C1

∑
i<j

x2
i xj + C2

∑
i<j<k

xixjxk.

Taking K of the variables xi to be 1, N −K to be 0, we obtain the set of conditions

0 ≤ K −K(K − 1)C1 +
K(K − 1)(K − 2)

6
C2 ≤ 1,
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which can be written, for K ≥ 2 :
1
K

≤ C1 −
K − 2

6
C2 ≤ 1

K − 1
. (11)

Taking successively K = 2, 3, 4, we get
1
2
≤ C1 ≤ 1,

C2 ≥ 6(C1 −
1
2
) ≥ 0,

C2 ≥ 1/2.

The left-hand side conditions in (11) can be written

C1 ≥ K − 2
6

C2 +
1
K

, (12)

and since C2 ≥ 1/2, the strongest one will be the one with highest K .
The right-hand side gives :

C1 ≤ K − 2
6

C2 +
1

K − 1
, (13)

and the conditions for K ≥ 4 are weaker than those for K = 4, and so we keep these for K = 3, 4, that is

C1 ≤ 1
6
C2 +

1
2

(14)

C1 ≤ 1
3
C2 +

1
3

. (15)

This implies that no 7-variable polynomial may exist. Indeed, we would have by (12)

C1 ≥ 5
6
C2 +

1
7
,

and by (15)
5
6
C2 +

1
7
≤ 1

3
C2 +

1
3
,

which gives C2 ≤ 8/21, contradicting C2 ≥ 1/2.

This also implies the uniqueness for K = 6. Indeed, (12) gives :

C1 ≥ 2
3
C2 +

1
6
,

and compatibility with (14), (15) implies C2 = 1/2.

Coming back to (11), we find
1
K

≤ C1 −
K − 2

12
≤ 1

K − 1
,

and for K = 4, this gives C1 ≤ 1/2, and finally C1 = 1/2, which proves Proposition 7.

We now prove Proposition 6.
1. – To show that P0 ≥ 0 if xj ≥ 0, by the Theorem of Choi - Lam - Reznick [3] already cited, it is

enough to do it when K of the variables are equal to 1, 6−K equal to 0 (K = 0, . . . , 6). Set

ϕ(K) = P (1, . . . , 1︸ ︷︷ ︸
K times

, 0, . . . , 0︸ ︷︷ ︸
6−K times

).

Then

ϕ(K) = K − K(K − 1)
2

+
K(K − 1)(K − 2)

12

=
1
12

K(K − 4)(K − 5),

and ϕ(K) ≥ 0 for K = 0, . . . , 6.
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2. – To show that P0 ≤ 1 if xj ∈ [0, 1], we write P0 under symmetric form :

P0 = 10

(
1
6

6∑
1

x3
i

)
− 27

(
1
6

2∑
1

x2
i

)(
1
6

6∑
1

xi

)
+ 18

(
1
6

6∑
1

xi

)3

= 10m3 − 27m1m2 + 18m3
1,

and we apply Lemma 4 again.

This concludes the proof of Proposition 7, and that of Theorem 1.

Remark. – In a preliminary version of this paper, the proof of Proposition 5 was obtained by symbolic
manipulation, the following way : Maple computes the 6 partial derivatives (which have degree 2), and the

differences
∂P

∂xi
− ∂P

∂xj
. The entire system of differences is then solved. Then one studies the boundary cases

xj = 0, 1. The proof presented here is of course much simpler, but there is no evidence it exists for degree 5
and above.

We now investigate similar concepts for the quantity

{P}0,1 = max
xj=0,1

|P (x1, . . . , xN )|

and define Dk as the smallest constant such that

|P |lead ≤ Dk max
xj=0,1

|P (x1, . . . , xN )|

holds for all polynomials P , homogeneous of degree k , in many variables x1, . . . , xN .

First, the proof of Theorem 1.2 in [1] shows that

Dk ≤ 4k2.

We are going to prove :

Proposition 8. – For every k ≥ 1 , Dk ≥ 2k2 .

Proof of Proposition 8. – We consider P under the form :

P = A0(
1
N

N∑
1

xk
i ) + A1(

1
N

N∑
1

xk−1
i )(

1
N

N∑
1

xi) + A2(
1
N

N∑
1

xk−2
i )(

1
N

N∑
1

xi)2

+ · · ·+ Aj(
1
N

N∑
1

xk−j
i )(

1
N

N∑
1

xi)j + · · ·+ Ak−1(
1
N

N∑
1

xi)k

= A0mk + A1mk−1m1 + · · ·+ Ajmk−jm
j
1 + · · ·+ Ak−1m

k
1 ,

with our previous notation.
The coefficient of xk

1 is
A0

N
+

A1

N2
+ · · ·+ Ak−1

Nk
,

and therefore
|P |lead = A0 +

A1

N
+ · · ·+ Ak−1

Nk−1
→ A0 ,

when N → +∞ .
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If M of the variables take the value 1, and the other N −M the value 0, we have :

P (1, . . . , 1︸ ︷︷ ︸
M times

, 0, . . . , 0︸ ︷︷ ︸
N−M times

) = A0
M

N
+ A1(

M

N
)2 + · · ·+ Ak−1(

M

N
)k ,

and so, if we set
f(x) = A0x + A1x

2 + · · ·+ Ak−1x
k,

we want 0 ≤ f(x) ≤ 1 if 0 ≤ x ≤ 1, and A0 maximal.
But A0 = f ′(0), and the solution of this problem is given by the Chebyshev polynomial Tk (see Rivlin

[4]).

So we take f(x) =
(−1)k−1Tk(2x− 1) + 1

2
, and since −1 ≤ Tk ≤ 1 , we have 0 ≤ f ≤ 1 on [0,1].

Also, f(0) = 0, and f ′(0) = T ′
k(−1) = k2 (see Rivlin [4], p. 105).

Finally, we set
Q(x1, . . . , x2N ) = P (x1, . . . , xN )− P (xN+1, . . . , x2N ),

and we obtain the announced estimate.

We observe that the coefficients A0, . . . , Ak−1 can be explicitly computed from the coefficients of the
Chebyshev polynomial. In fact, P can be written as

P (x1, . . . , xN ) =
1
N

N∑
i=1

xk+1
i

m1
f(m1/xi).

The quantity {P}0,1 is of course much easier to compute than any of the existing norms ; however, it
is not a norm : {x2y − xy2}0,1 = 0.
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