
Abstract

For an homogeneous polynomial P in N variables, x_{1}, \cdots, x_{N}, of degree k, the leading terms are those which contain only one variable, raised to the power k. If $0 \leq P \leq 1$ when all variables satisfy $0 \leq x_{j} \leq 1$, how large can the leading coefficients be ? Estimates were given in [1] by Aron Beauzamy - Enflo ; we improve these estimates in general and solve the problem completely for $k=2$ and 3.

Symbolic Computation (MAPLE on a Digital DecStation 5000) was heavily used at two levels : first in order to get a preliminary intuition on the concepts discussed here, and second, as symbolic manipulation on polynomials, in most proofs.

Numerical analysis was made on a Connection Machine CM2, using the hypercube representation obtained by Beauzamy - Frot - Millour [2].

Supported by the C.N.R.S. and the N.S.F., by contract E.T.C.A./C.R.E.A. no 20367/91, and by research contract EERP-FR 22, Digital Eq. Corp.

Let

$$
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{|\alpha|=k} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}
$$

with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right),|\alpha|=\alpha_{1}+\cdots+\alpha_{N}$, be an homogeneous polynomial of degree k in N variables x_{1}, \ldots, x_{N}.

As already done by Aron - Beauzamy - Enflo in [1], among all coefficients a_{α}, we distinguish the leading ones, denoted by $a_{l}(l=1, \ldots, N): a_{l}$ is the coefficient of the sole variable x_{l}, raised to the power k. So the leading terms are those which contain just one variable, raised to the power k (this terminology is of course inspired by the one-variable situation). All other terms contain at least two variables, and the polynomial can be written

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\sum_{l=1}^{N} a_{l} x_{l}^{k}+\sum_{|\beta|=k} a_{\beta} x_{1}^{\beta_{1}} \cdots x_{N}^{\beta_{N}} \tag{1}
\end{equation*}
$$

where in the last term all β 's have at least two non-zero components.
The question raised in [1] is the following : if we know $\sum_{l=1}^{N}\left|a_{l}\right|$, can we find a lower bound for $\max _{0 \leq x_{j} \leq 1}\left|P\left(x_{1}, \cdots, x_{N}\right)\right| ?$

The reason for this question, explained in [1], is that such a result allows to decrease the number of terms in the polynomial one needs to consider : in order to find a lower bound for $\max _{0 \leq x_{j} \leq 1}\left|P\left(x_{1}, \cdots, x_{N}\right)\right|$ (a quantity which depends on all terms in P), one needs only to consider the $a_{l}^{\prime} s$, which represent only N terms.

In [1] was shown that

$$
\begin{equation*}
\sum_{1}^{N}\left|a_{l}\right| \leq C_{k} \max _{0 \leq x_{j} \leq 1}\left|P\left(x_{1}, \cdots, x_{N}\right)\right| \tag{3}
\end{equation*}
$$

with $C_{k} \leq 4 k^{2}$, and that the best C_{k} must satisfy $C_{k} \geq k$.
We will obtain estimates for C_{k} from below by an iterative procedure (at each step, replacing the variable by a previously obtained polynomial), and this iterative procedure will require $0 \leq P \leq 1$ when all variables satisfy $0 \leq x_{j} \leq 1$ (and not just $|P| \leq 1$). For this technical reason, we investigate :

$$
\begin{equation*}
B_{k}=\sup \left\{\sum_{l=1}^{N}\left|a_{l}\right| ; P \text { as in (1), } 0 \leq P \leq 1 \text { if } 0 \leq x_{j} \leq 1, j=1, \ldots, N ; N=1,2, \ldots\right\} \tag{4}
\end{equation*}
$$

and we want to find a lower bound for B_{k}. We write $|P|_{\text {lead }}$ instead of $\sum_{l=1}^{N}\left|a_{l}\right|$.
Our main result is :
Theorem 1. - For $k \geq 2$, the following estimates hold:
$B_{2} \geq 4, B_{3} \geq 9$, and for $k \geq 3$,

$$
B_{k} \geq k^{\log 6 / \log 3}
$$

Each of these estimates requires the production of a corresponding polynomial. The techniques are different in each case.

Proposition 2. - The polynomial in N variables, homogeneous of degree 2:

$$
P\left(x_{1}, \ldots, x_{N}\right)=A\left(\frac{x_{1}^{2}+\cdots+x_{N}^{2}}{N}-\frac{2}{N(N-1)} \sum_{i<j} x_{i} x_{j}\right)
$$

with $A=4(N-1) / N$ if N is even, $A=4 N /(N+1)$ if N is odd, satisfies $0 \leq P \leq 1$ if all x_{j} 's satisfy $0 \leq x_{j} \leq 1$.

Proof of Proposition 2.

- Let's first show that $P \geq 0$, that is:

$$
\frac{2}{N(N-1)} \sum_{i<j} x_{i} x_{j} \leq \frac{1}{N}\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)
$$

or

$$
\frac{1}{N(N-1)}\left(\sum_{i \neq j} x_{i} x_{j}+\sum_{i} x_{i}^{2}\right) \leq\left(\frac{1}{N}+\frac{1}{N(N-1)}\right) \sum_{i} x_{i}^{2}
$$

which is equivalent to

$$
\frac{1}{N}\left(\sum_{i} x_{i}\right)^{2} \leq \sum_{i} x_{i}^{2}
$$

a consequence of Hölder's inequality.

- Let's now show that $P \leq 1$. Since P is a convex function of each x_{j}, it's enough to show it when $x_{j}=0$ or 1 .

Let's assume that K of the x_{j} 's are $1, N-K$ are 0 .
The condition $P \leq 1$ reads

$$
A\left(\frac{K}{N}-\frac{2}{N(N-1)} \frac{K(K-1)}{2}\right) \leq 1
$$

or

$$
A \frac{K(N-K)}{N(N-1)} \leq 1
$$

The maximum of $\frac{K(N-K)}{N(N-1)}$ is reached for $K \sim N / 2$. More precisely, if N is even, $N=2 M$, it is obtained for $K=M$, and gives $\frac{N}{4(N-1)}$, and if $N=2 M+1$, it is obtained for $K=M$, and gives $\frac{N+1}{4 N}$. The values of A follow.

This gives the required estimate for B_{2} in Theorem 1. We observe that the maximum is not obtained for a fixed number of variables, but letting $N \rightarrow+\infty$.

We now turn to the case of degree 3 :
Proposition 3. - The polynomial

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=A \sum_{1}^{N} x_{i}^{3}-B \sum_{i \neq j} x_{i}^{2} x_{j}+C \sum_{i<j<k} x_{i} x_{j} x_{k} \tag{5}
\end{equation*}
$$

with

$$
\begin{aligned}
A & =\frac{1}{N^{3}}(3 N-4)^{2} \\
B & =\frac{8}{N^{3}}(3 N-6) \\
C & =\frac{96}{N^{3}}
\end{aligned}
$$

satisfies $0 \leq P \leq 1$ when all x_{j} 's satisfy $0 \leq x_{j} \leq 1$.
Assuming this result, we see that the estimate for B_{3} follows : indeed, when $N \rightarrow+\infty,|P|_{\text {lead }} \rightarrow 9$. But here again, the maximum is not reached for any prescribed number of variables.

Proof of Proposition 3.

We take P under the form (5) and compute the values of A, B, C, so it has the required properties. First, we study the case where K of the variables x_{j} take the value 1 , and $N-K$ take the value 0 ($0 \leq K \leq N$). We set

$$
\varphi(K)=P(\underbrace{1, \ldots, 1}_{K \text { times }}, 0, \ldots, 0)
$$

and so :

$$
\begin{equation*}
\varphi(K)=A K-B K(K-1)+\frac{C}{6} K(K-1)(K-2) \tag{6}
\end{equation*}
$$

We will choose A, B, C, such that $0 \leq \varphi(K) \leq 1$ for $K=0, \ldots, N$, and with A as large as possible since $|P|_{\text {lead }}=A N$.

The polynomial $\varphi(x)$ must vanish at 0 , must satisfy $0 \leq \varphi(x) \leq 1$ if $x \in[0, N]$, and we want $\varphi(1)$ to be as large as possible. Therefore, we will require φ to have a double zero $\alpha, 0 \leq \alpha \leq N$ (which ensures $\varphi(x) \geq 0,0 \leq x \leq N)$, and we prescribe $\varphi(x)$ to be of the form

$$
\begin{equation*}
\varphi(x)=\gamma x(x-\alpha)^{2} \tag{7}
\end{equation*}
$$

where $0 \leq \alpha \leq N$, and $\gamma>0$ have to be chosen. Then clearly $\varphi(K) \geq 0$ for all $K \geq 0$, and by a result of Choi - Lam - Reznick ([3], theorem 3.7), since $\operatorname{deg} P \leq 3$, this implies that $P \geq 0$ when $x_{j} \geq 0$.

We have

$$
\varphi^{\prime}(x)=\gamma(x-\alpha)(3 x-\alpha)
$$

and so, in order to impose $\varphi(x) \leq 1,0 \leq x \leq N$, all we have to require is $\varphi(\alpha / 3) \leq 1, \varphi(N) \leq 1$, that is

$$
\left\{\begin{aligned}
2 \gamma \alpha^{3} / 27 & \leq 1 \\
\gamma N(N-\alpha)^{2} & \leq 1
\end{aligned}\right.
$$

We put $\alpha=\lambda N(0<\lambda<1)$, and we obtain

$$
\left\{\begin{align*}
4 \gamma \lambda^{3} N^{3} / 27 & \leq 1 \tag{8}\\
\gamma N^{3}(1-\lambda)^{2} & \leq 1
\end{align*}\right.
$$

But $\varphi(1)=\gamma(1-\alpha)^{2}=\gamma(1-\lambda N)^{2}$ is an increasing function of γ. So $\varphi(1)$ will be maximal if both inequalities in (8) are equalities. Solving in λ, MAPLE gets

$$
\left(\frac{\lambda}{3}\right)^{3}=\left(\frac{1-\lambda}{2}\right)^{2}
$$

and finds the solutions $\lambda=3 / 4,3,3$.

This gives $\alpha=3 N / 4, \gamma=16 / N^{3}$, and

$$
\varphi(x)=\frac{16}{N^{3}} x\left(x-\frac{3}{4} N\right)^{2} .
$$

The values of A, B, C, are now deduced from the system :

$$
\varphi(1)=A, \quad \varphi(2)=2 A-2 B, \quad C=6 \gamma,
$$

easily solved by MAPLE.
We now show that $P \leq 1$ when all x_{j} are ≤ 1.
For this, we first observe that P can be written as :

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\frac{9}{N} \sum_{1}^{N} x_{i}^{3}-\frac{24}{N^{2}}\left(\sum_{1}^{N} x_{i}^{2}\right)\left(\sum_{1}^{N} x_{i}\right)+\frac{16}{N^{3}}\left(\sum_{1}^{N} x_{i}\right)^{3} \tag{9}
\end{equation*}
$$

To simplify our notation, we put

$$
m_{1}=\frac{1}{N} \sum_{1}^{N} x_{i}, \quad m_{2}=\frac{1}{N} \sum_{1}^{N} x_{i}^{2}, \quad m_{3}=\frac{1}{N} \sum_{1}^{N} x_{i}^{3}
$$

and P becomes

$$
P=9 m_{1}-24 m_{1} m_{2}+16 m_{3}
$$

We have :
Lemma 4. - Let P be a symmetric polynomial of degree 3, written as :

$$
P=a m_{3}+b m_{1} m_{2}+c m_{1}^{3}
$$

where $a+b+c \leq 1,3 a+b \geq 0,2 b+3 c \geq 0$. Then, if $P \geq 0$ when all $x_{i} \geq 0, P$ automatically satisfies $P \geq 1$ when $0 \leq x_{i} \leq 1$.

Proof of Lemma 4. - We set $x_{i}=1-t_{i}$. If $x_{i} \leq 1, t_{i} \geq 0$, and with the notation

$$
\mu_{1}=\frac{1}{N} \sum_{1}^{N} t_{i}, \quad \mu_{2}=\frac{1}{N} \sum_{1}^{N} t_{i}^{2}, \quad \mu_{3}=\frac{1}{N} \sum_{1}^{N} t_{i}^{3}
$$

P becomes:

$$
P=-\left(a \mu_{3}+b \mu_{1} \mu_{2}+c \mu_{1}^{3}\right)+a+b+c-3 \mu_{1}(a+b+c)+\mu_{2}(3 a+b)+\mu_{1}^{2}(2 b+3 c)
$$

Since $a \mu_{3}+b \mu_{1} \mu_{2}+c \mu_{1}^{3} \geq 0$, the condition $P \leq 1$ will be satisfied as soon as :

$$
a+b+c-3 \mu_{1}(a+b+c)+\mu_{2}(3 a+b)+\mu_{1}^{2}(2 b+3 c) \leq 1
$$

But $\mu_{2} \leq \mu_{1}, 3 a+b \geq 0$, so this inequality holds if

$$
a+b+c-\mu_{1}\left(1-\mu_{1}\right)(2 b+3 c) \leq 1
$$

which is satisfied by assumption. This proves Lemma 4, and finishes the proof of the Theorem in the case $k=3$.

Remark. - If we put

$$
Q\left(x_{1}, \ldots, x_{2 N}\right)=P\left(x_{1}, \ldots, x_{N}\right)-P\left(x_{N+1}, \ldots, x_{2 N}\right)
$$

we find that $\left|Q\left(x_{1}, \ldots, x_{2 N}\right)\right| \leq 1$ if $0 \leq x_{j} \leq 1$, and $|Q|_{\text {lead }} \rightarrow 18$ when $N \rightarrow+\infty$.
So the best constant C_{3} in the inequality

$$
|Q|_{\text {lead }} \leq C_{k} \sup _{0 \leq x_{j} \leq 1}\left|Q\left(x_{1}, \cdots, x_{N}\right)\right|
$$

satisfies $C_{3} \geq 18$; Theorem 1.2 in [1] shows that $C_{k} \leq 4 k^{2}$.
Can this construction of P, with large leading coefficients, be carried over for $k>3$? We don't know. Following the same pattern would require :

- finding a polynomial $\varphi(x)$ of degree K, in one variable, with $0 \leq \varphi(x) \leq 1$ if $0 \leq x \leq N$, and $\varphi(1)$ as large as possible,
- identifying the many-variable polynomial $P\left(x_{1}, \ldots, x_{N}\right)$, homogeneous of degree k, with first term $A \sum_{1}^{N} x_{i}^{k}$, such that

$$
P(\underbrace{1, \ldots, 1}_{j \text { times }}, 0, \ldots, 0)=\varphi(j),
$$

for $j=0, \ldots, N$,

- Proving that $0 \leq P \leq 1$ if all x_{j} 's satisfy $0 \leq x_{j} \leq 1$.

The first two steps are not very hard to perform, but the last one -proving that $0 \leq P \leq 1$ - does not seem within our reach at present. Of course, the result of Choi- Lam-Reznick we have used is not valid for $k \geq 3$, but this is not the main point : our proof, for $k=3$, only uses this result for simplicity (our original proof did not). The main point is that no tool is presently known, ensuring that a many- variable polynomial, of degree $k>3$, satisfies $0 \leq P \leq 1$ when all x_{i} satisfy $0 \leq x_{i} \leq 1$.

Since this problem cannot be solved, we have two possibilities. The first one is to build P, with $0 \leq P \leq 1$, by some iterative procedure from a known polynomial : this will lead to the estimate for B_{k} in Theorem 1. These estimates are not in k^{2} as we would like, but they are better than anything previously known.

The second one will be to change the norm, and replace

$$
\sup _{0 \leq x_{j} \leq 1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

by the quantity

$$
\sup _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

which will be discussed at the end of the paper.
We now turn to the iterative procedure in order to estimate B_{k}.
Proposition 5. - Assume we can find a polynomial P_{0}, with N_{0} variables, homogeneous of degree k_{0}, with the properties :

- all leading coefficients are 1,
- if all x_{j} satisfy $0 \leq x_{j} \leq 1$, then $0 \leq P_{0} \leq 1$.

Then $B_{k} \geq k^{\log N_{0} / \log k_{0}}$, for all k of the form $k=k_{0}^{j}, j \in \mathbb{N}$.
Proof of Proposition 5.- By assumption $\left|P_{0}\right|_{\text {lead }}=N$ and $0 \leq P_{0} \leq 1$ if all $x_{j} \in[0,1]$. Set $P_{1}=P_{0}$, and

$$
P_{2}=P_{0}\left(P_{1}\left(x_{1}, \ldots, x_{N_{0}}\right), P_{1}\left(x_{N_{O}+1}, \ldots, x_{2 N_{0}}\right), \ldots, P_{1}\left(x_{\left(N_{0}-1\right) N_{0}+1}, \ldots, x_{N_{0}^{2}}\right)\right) .
$$

So P_{2} has N_{0}^{2} variables, $\left|P_{2}\right|_{\text {lead }}=N^{2}$, $\operatorname{deg} P_{2}=k_{0}^{2}$, and $0 \leq P_{2} \leq 1$ if $x_{i} \in[0,1]$.
Assume P_{j-1} has been defined, with N_{0}^{j-1} variables, deg $P_{j-1}=k^{j-1}$, and $0 \leq P_{j-1} \leq 1$ if $x_{i} \in[0,1]$. Set :

$$
P_{j}=P_{0}\left(P_{j-1}\left(x_{1}, \ldots, x_{N_{O}^{j-1}}\right), \ldots, P_{j-1}\left(x_{\left(N_{0}-1\right) N_{0}^{j-1}+1}, \ldots, x_{N_{0}^{j}}\right)\right) .
$$

So P_{j} has N_{0}^{j} variables, $\left|P_{j}\right|_{\text {lead }}=N_{0}^{j}$, $\operatorname{deg} P_{j}=k_{0}^{j}$, and $0 \leq P_{j} \leq 1$ if $x_{i} \in[0,1]$.
Set $k=\operatorname{deg} P_{j}$. Then :

$$
N_{0}^{j} \leq B_{k} .
$$

But $k=k_{0}^{j}, j=\log k / \log k_{0}$, and

$$
B_{k} \geq N_{0}^{\log k / \log k_{0}}=k^{\log N_{0} / \log k_{0}}
$$

as we announced. This proves Proposition 5.
We observe that, in order to be applied, this inductive procedure requires a polynomial with leading coefficients all equal to 1 , and this is not the case of the ones we have exhibited so far.

So we will prove :
Proposition 6. - The polynomial in 6 variables, with 56 terms :

$$
\begin{equation*}
P_{0}\left(x_{1}, \ldots, x_{6}\right)=\sum_{1}^{6} x_{i}^{3}-\frac{1}{2} \sum_{i \neq j} x_{i}^{2} x_{j}+\frac{1}{2} \sum_{i<j<k} x_{i} x_{j} x_{k} \tag{10}
\end{equation*}
$$

satisfies $0 \leq P_{0} \leq 1$ if $x_{i} \in[0,1]$.
This proposition, producing a polynomial of degree 3 with 6 variables, gives the estimate $k^{\log 6 / \log 3}$ in Theorem 1. It improves upon the estimate $k^{\log 3 / \log 2}$, obtained by A.Tonge from the consideration of the polynomial

$$
P_{0}(x, y, z)=x^{2}+y^{2}+z^{2}-x y-y z-z x
$$

which also satisfies $0 \leq P_{0} \leq 1$ if $x, y, z \in[0,1]$.
Before proving Propostion 6, we will state :
Proposition 7. - The polynomial P_{0} defined in (10) is, among all polynomials of degree 3 with leading coefficients 1 , with 6 variables, the only one which may satisfy $0 \leq P_{0} \leq 1$ if all $x_{i} \in[0,1]$. There is no such polynomial with 7 variables.

Proof of Proposition 7.- We consider any degree 3 polynomial with N variables, of the form :

$$
P=\sum_{1}^{N} x_{i}^{3}-C_{1} \sum_{i<j} x_{i}^{2} x_{j}+C_{2} \sum_{i<j<k} x_{i} x_{j} x_{k}
$$

Taking K of the variables x_{i} to be $1, N-K$ to be 0 , we obtain the set of conditions

$$
0 \leq K-K(K-1) C_{1}+\frac{K(K-1)(K-2)}{6} C_{2} \leq 1
$$

which can be written, for $K \geq 2$:

$$
\begin{equation*}
\frac{1}{K} \leq C_{1}-\frac{K-2}{6} C_{2} \leq \frac{1}{K-1} \tag{11}
\end{equation*}
$$

Taking successively $K=2,3$, 4, we get

$$
\begin{aligned}
\frac{1}{2} & \leq C_{1} \leq 1 \\
C_{2} & \geq 6\left(C_{1}-\frac{1}{2}\right) \geq 0 \\
C_{2} & \geq 1 / 2
\end{aligned}
$$

The left-hand side conditions in (11) can be written

$$
\begin{equation*}
C_{1} \geq \frac{K-2}{6} C_{2}+\frac{1}{K} \tag{12}
\end{equation*}
$$

and since $C_{2} \geq 1 / 2$, the strongest one will be the one with highest K.
The right-hand side gives :

$$
\begin{equation*}
C_{1} \leq \frac{K-2}{6} C_{2}+\frac{1}{K-1} \tag{13}
\end{equation*}
$$

and the conditions for $K \geq 4$ are weaker than those for $K=4$, and so we keep these for $K=3,4$, that is

$$
\begin{align*}
C_{1} & \leq \frac{1}{6} C_{2}+\frac{1}{2} \tag{14}\\
C_{1} & \leq \frac{1}{3} C_{2}+\frac{1}{3} . \tag{15}
\end{align*}
$$

This implies that no 7 -variable polynomial may exist. Indeed, we would have by (12)

$$
C_{1} \geq \frac{5}{6} C_{2}+\frac{1}{7}
$$

and by (15)

$$
\frac{5}{6} C_{2}+\frac{1}{7} \leq \frac{1}{3} C_{2}+\frac{1}{3},
$$

which gives $C_{2} \leq 8 / 21$, contradicting $C_{2} \geq 1 / 2$.
This also implies the uniqueness for $K=6$. Indeed, (12) gives :

$$
C_{1} \geq \frac{2}{3} C_{2}+\frac{1}{6},
$$

and compatibility with (14), (15) implies $C_{2}=1 / 2$.
Coming back to (11), we find

$$
\frac{1}{K} \leq C_{1}-\frac{K-2}{12} \leq \frac{1}{K-1}
$$

and for $K=4$, this gives $C_{1} \leq 1 / 2$, and finally $C_{1}=1 / 2$, which proves Proposition 7 .
We now prove Proposition 6 .

1. - To show that $P_{0} \geq 0$ if $x_{j} \geq 0$, by the Theorem of Choi - Lam - Reznick [3] already cited, it is enough to do it when K of the variables are equal to $1,6-K$ equal to $0(K=0, \ldots, 6)$. Set

$$
\varphi(K)=P(\underbrace{1, \ldots, 1}_{K \text { times }}, \underbrace{0, \ldots, 0}_{6-K \text { times }}) .
$$

Then

$$
\begin{aligned}
\varphi(K) & =K-\frac{K(K-1)}{2}+\frac{K(K-1)(K-2)}{12} \\
& =\frac{1}{12} K(K-4)(K-5),
\end{aligned}
$$

and $\varphi(K) \geq 0$ for $K=0, \ldots, 6$.
2. - To show that $P_{0} \leq 1$ if $x_{j} \in[0,1]$, we write P_{0} under symmetric form :

$$
\begin{aligned}
P_{0} & =10\left(\frac{1}{6} \sum_{1}^{6} x_{i}^{3}\right)-27\left(\frac{1}{6} \sum_{1}^{2} x_{i}^{2}\right)\left(\frac{1}{6} \sum_{1}^{6} x_{i}\right)+18\left(\frac{1}{6} \sum_{1}^{6} x_{i}\right)^{3} \\
& =10 m_{3}-27 m_{1} m_{2}+18 m_{1}^{3}
\end{aligned}
$$

and we apply Lemma 4 again.
This concludes the proof of Proposition 7, and that of Theorem 1.
Remark. - In a preliminary version of this paper, the proof of Proposition 5 was obtained by symbolic manipulation, the following way: Maple computes the 6 partial derivatives (which have degree 2), and the differences $\frac{\partial P}{\partial x_{i}}-\frac{\partial P}{\partial x_{j}}$. The entire system of differences is then solved. Then one studies the boundary cases $x_{j}=0,1$. The proof presented here is of course much simpler, but there is no evidence it exists for degree 5 and above.

We now investigate similar concepts for the quantity

$$
\{P\}_{0,1}=\max _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

and define D_{k} as the smallest constant such that

$$
|P|_{\text {lead }} \leq D_{k} \max _{x_{j}=0,1}\left|P\left(x_{1}, \ldots, x_{N}\right)\right|
$$

holds for all polynomials P, homogeneous of degree k, in many variables x_{1}, \ldots, x_{N}.
First, the proof of Theorem 1.2 in [1] shows that

$$
D_{k} \leq 4 k^{2}
$$

We are going to prove :
Proposition 8. - For every $k \geq 1, D_{k} \geq 2 k^{2}$.
Proof of Proposition 8. - We consider P under the form :

$$
\begin{aligned}
P= & A_{0}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k}\right)+A_{1}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-1}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)+A_{2}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-2}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{2} \\
& +\cdots+A_{j}\left(\frac{1}{N} \sum_{1}^{N} x_{i}^{k-j}\right)\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{j}+\cdots+A_{k-1}\left(\frac{1}{N} \sum_{1}^{N} x_{i}\right)^{k} \\
= & A_{0} m_{k}+A_{1} m_{k-1} m_{1}+\cdots+A_{j} m_{k-j} m_{1}^{j}+\cdots+A_{k-1} m_{1}^{k},
\end{aligned}
$$

with our previous notation.
The coefficient of x_{1}^{k} is

$$
\frac{A_{0}}{N}+\frac{A_{1}}{N^{2}}+\cdots+\frac{A_{k-1}}{N^{k}}
$$

and therefore

$$
|P|_{l e a d}=A_{0}+\frac{A_{1}}{N}+\cdots+\frac{A_{k-1}}{N^{k-1}} \rightarrow A_{0}
$$

when $N \rightarrow+\infty$.

If M of the variables take the value 1 , and the other $N-M$ the value 0 , we have :

$$
P(\underbrace{1, \ldots, 1}_{M \text { times }}, \underbrace{0, \ldots, 0}_{N-M \text { times }})=A_{0} \frac{M}{N}+A_{1}\left(\frac{M}{N}\right)^{2}+\cdots+A_{k-1}\left(\frac{M}{N}\right)^{k},
$$

and so, if we set

$$
f(x)=A_{0} x+A_{1} x^{2}+\cdots+A_{k-1} x^{k}
$$

we want $0 \leq f(x) \leq 1$ if $0 \leq x \leq 1$, and A_{0} maximal.
But $A_{0}=f^{\prime}(0)$, and the solution of this problem is given by the Chebyshev polynomial T_{k} (see Rivlin [4]).

So we take $f(x)=\frac{(-1)^{k-1} T_{k}(2 x-1)+1}{2}$, and since $-1 \leq T_{k} \leq 1$, we have $0 \leq f \leq 1$ on $[0,1]$. Also, $f(0)=0$, and $f^{\prime}(0)=T_{k}^{\prime}(-1)=k^{2}$ (see Rivlin [4], p. 105).

Finally, we set

$$
Q\left(x_{1}, \ldots, x_{2 N}\right)=P\left(x_{1}, \ldots, x_{N}\right)-P\left(x_{N+1}, \ldots, x_{2 N}\right)
$$

and we obtain the announced estimate.
We observe that the coefficients A_{0}, \ldots, A_{k-1} can be explicitly computed from the coefficients of the Chebyshev polynomial. In fact, P can be written as

$$
P\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{x_{i}^{k+1}}{m_{1}} f\left(m_{1} / x_{i}\right) .
$$

The quantity $\{P\}_{0,1}$ is of course much easier to compute than any of the existing norms ; however, it is not a norm : $\left\{x^{2} y-x y^{2}\right\}_{0,1}=0$.

Acknowledgements

Numerical computations (with 64 variables) related to Propositions 2 and 3 were performed by JeanLouis Frot on the Connection Machine CM2, at the E.T.C.A., Arcueil. They use the hypercube representation of a many-variable polynomial, obtained in [2], and were quite essential to the understanding of the behavior of these polynomials.

We are also indebted to Bruce Reznick for showing the reference [3].

References

[1] Aron, R. - Beauzamy, B. - Enflo, P. : Polynomials in many variables : Real vs Complex Norms. To appear in J. of Approximation Theory.
[2] Beauzamy, B. - Frot, J.-L. - Millour, C. : Massively Parallel Computations on Many-variable Polynomials : when seconds count. Preprint.
[3] Choi, M. D. - Lam, T. Y. - Reznick, B. : Even Symmetric Sextics. Mathematische Zeitschrift, 195, 1987, pp. 559-580.
[4] Rivlin, T. J. : The Chebyshev Polynomials. Wiley-Interscience, 1974.

