ON THE LEADING COEFFICIENTS OF REAL MANY-VARIABLE POLYNOMIALS

by Bernard Beauzamy

Institut de Calcul Mathématique Université de Paris 7 2 place Jussieu 75251 Paris Cedex 05 - France

Abstract. – For an homogeneous polynomial P in N variables, x_1, \dots, x_N , of degree k, the leading terms are those which contain only one variable, raised to the power k. If $0 \le P \le 1$ when all variables satisfy $0 \le x_j \le 1$, how large can the leading coefficients be? Estimates were given in [1] by Aron - Beauzamy - Enflo; we improve these estimates in general and solve the problem completely for k = 2 and 3.

Symbolic Computation (MAPLE on a *Digital* DecStation 5000) was heavily used at two levels : first in order to get a preliminary intuition on the concepts discussed here, and second, as symbolic manipulation on polynomials, in most proofs.

Numerical analysis was made on a Connection Machine CM2, using the hypercube representation obtained by Beauzamy - Frot - Millour [2].

Supported by the C.N.R.S. and the N.S.F., by contract E.T.C.A./C.R.E.A. no 20367/91, and by research contract EERP-FR 22, Digital Eq. Corp.

Let

$$P(x_1,\ldots,x_N) = \sum_{|\alpha|=k} a_{\alpha} x_1^{\alpha_1} \cdots x_N^{\alpha_N} ,$$

with $\alpha = (\alpha_1, \ldots, \alpha_N)$, $|\alpha| = \alpha_1 + \cdots + \alpha_N$, be an homogeneous polynomial of degree k in N variables x_1, \ldots, x_N .

As already done by Aron - Beauzamy - Enflo in [1], among all coefficients a_{α} , we distinguish the *leading* ones, denoted by a_l (l = 1, ..., N): a_l is the coefficient of the sole variable x_l , raised to the power k. So the *leading terms* are those which contain just one variable, raised to the power k (this terminology is of course inspired by the one-variable situation). All other terms contain at least two variables, and the polynomial can be written

$$P(x_1, \dots, x_N) = \sum_{l=1}^{N} a_l x_l^k + \sum_{|\beta|=k} a_{\beta} x_1^{\beta_1} \cdots x_N^{\beta_N} , \qquad (1)$$

where in the last term all β 's have at least two non-zero components.

The question raised in [1] is the following : if we know $\sum_{l=1}^{N} |a_l|$, can we find a lower bound for $\max_{0 \le x_j \le 1} |P(x_1, \cdots, x_N)|$?

The reason for this question, explained in [1], is that such a result allows to decrease the number of terms in the polynomial one needs to consider : in order to find a lower bound for $\max_{0 \le x_j \le 1} |P(x_1, \dots, x_N)|$ (a quantity which depends on <u>all terms</u> in P), one needs only to consider the $a'_l s$, which represent only N terms.

In [1] was shown that

$$\sum_{1}^{N} |a_{l}| \le C_{k} \max_{0 \le x_{j} \le 1} |P(x_{1}, \cdots, x_{N})|$$
(3)

with $C_k \leq 4k^2$, and that the best C_k must satisfy $C_k \geq k$.

We will obtain estimates for C_k from below by an iterative procedure (at each step, replacing the variable by a previously obtained polynomial), and this iterative procedure will require $0 \le P \le 1$ when all variables satisfy $0 \le x_j \le 1$ (and not just $|P| \le 1$). For this technical reason, we investigate :

$$B_k = \sup\left\{\sum_{l=1}^N |a_l| \; ; \; P \text{ as in (1)}, \; 0 \le P \le 1 \text{ if } 0 \le x_j \le 1, \; j = 1, \dots, N \; ; \; N = 1, 2, \dots\right\}$$
(4)

and we want to find a lower bound for B_k . We write $|P|_{lead}$ instead of $\sum_{l=1}^{N} |a_l|$.

Our main result is :

Theorem 1. – For $k \ge 2$, the following estimates hold :

 $B_2 \ge 4$, $B_3 \ge 9$, and for $k \ge 3$,

$$B_k > k^{\log 6 / \log 3}$$

Each of these estimates requires the production of a corresponding polynomial. The techniques are different in each case.

Proposition 2. – The polynomial in N variables, homogeneous of degree 2 :

$$P(x_1,...,x_N) = A\left(\frac{x_1^2 + \dots + x_N^2}{N} - \frac{2}{N(N-1)}\sum_{i < j} x_i x_j\right),\,$$

with A = 4(N-1)/N if N is even, A = 4N/(N+1) if N is odd, satisfies $0 \le P \le 1$ if all x_j 's satisfy $0 \le x_j \le 1$.

Proof of Proposition 2.

– Let's first show that $P \ge 0$, that is :

$$\frac{2}{N(N-1)} \sum_{i < j} x_i x_j \leq \frac{1}{N} (x_1^2 + \dots + x_N^2)$$

or

$$\frac{1}{N(N-1)} \left(\sum_{i \neq j} x_i x_j + \sum_i x_i^2 \right) \leq \left(\frac{1}{N} + \frac{1}{N(N-1)} \right) \sum_i x_i^2 ,$$

which is equivalent to

$$\frac{1}{N} \left(\sum_{i} x_{i} \right)^{2} \le \sum_{i} x_{i}^{2},$$

a consequence of Hölder's inequality.

- Let's now show that $P \leq 1$. Since P is a convex function of each x_j , it's enough to show it when $x_j = 0$ or 1.

Let's assume that K of the x_j 's are 1, N - K are 0.

The condition $P \leq 1$ reads

$$A\left(\frac{K}{N} - \frac{2}{N(N-1)}\frac{K(K-1)}{2}\right) \leq 1.$$

or

$$A \frac{K(N-K)}{N(N-1)} \leq 1 .$$

The maximum of $\frac{K(N-K)}{N(N-1)}$ is reached for $K \sim N/2$. More precisely, if N is even, N = 2M, it is obtained for K = M, and gives $\frac{N}{4(N-1)}$, and if N = 2M+1, it is obtained for K = M, and gives $\frac{N+1}{4N}$. The values of A follow.

This gives the required estimate for B_2 in Theorem 1. We observe that the maximum is not obtained for a fixed number of variables, but letting $N \to +\infty$.

We now turn to the case of degree 3 :

Proposition 3. – The polynomial

$$P(x_1, \dots, x_N) = A \sum_{1}^{N} x_i^3 - B \sum_{i \neq j} x_i^2 x_j + C \sum_{i < j < k} x_i x_j x_k , \qquad (5)$$

with

$$A = \frac{1}{N^3} (3N - 4)^2,$$

$$B = \frac{8}{N^3} (3N - 6),$$

$$C = \frac{96}{N^3},$$

satisfies $0 \le P \le 1$ when all x_j 's satisfy $0 \le x_j \le 1$.

Assuming this result, we see that the estimate for B_3 follows : indeed, when $N \to +\infty$, $|P|_{lead} \to 9$. But here again, the maximum is not reached for any prescribed number of variables.

Proof of Proposition 3.

We take P under the form (5) and compute the values of A, B, C, so it has the required properties. First, we study the case where K of the variables x_j take the value 1, and N - K take the value 0 $(0 \le K \le N)$. We set

$$\varphi(K) = P(\underbrace{1,\ldots,1}_{K \ times}, 0,\ldots, 0)$$

and so :

$$\varphi(K) = AK - BK(K-1) + \frac{C}{6}K(K-1)(K-2).$$
(6)

We will choose A, B, C, such that $0 \le \varphi(K) \le 1$ for K = 0, ..., N, and with A as large as possible since $|P|_{lead} = AN$.

The polynomial $\varphi(x)$ must vanish at 0, must satisfy $0 \le \varphi(x) \le 1$ if $x \in [0, N]$, and we want $\varphi(1)$ to be as large as possible. Therefore, we will require φ to have a double zero α , $0 \le \alpha \le N$ (which ensures $\varphi(x) \ge 0$, $0 \le x \le N$), and we prescribe $\varphi(x)$ to be of the form

$$\varphi(x) = \gamma x (x - \alpha)^2, \tag{7}$$

where $0 \le \alpha \le N$, and $\gamma > 0$ have to be chosen. Then clearly $\varphi(K) \ge 0$ for all $K \ge 0$, and by a result of Choi - Lam - Reznick ([3], theorem 3.7), since deg $P \le 3$, this implies that $P \ge 0$ when $x_j \ge 0$.

We have

$$\varphi'(x) = \gamma (x - \alpha)(3x - \alpha),$$

and so, in order to impose $\varphi(x) \leq 1$, $0 \leq x \leq N$, all we have to require is $\varphi(\alpha/3) \leq 1$, $\varphi(N) \leq 1$, that is

$$\begin{cases} 2\gamma\alpha^3/27 \leq 1\\ \gamma N(N-\alpha)^2 \leq 1 \end{cases}$$

We put $\alpha = \lambda N$ (0 < λ < 1), and we obtain

$$\begin{cases} 4\gamma\lambda^3 N^3/27 \leq 1\\ \gamma N^3(1-\lambda)^2 \leq 1 \end{cases}$$
(8)

But $\varphi(1) = \gamma(1-\alpha)^2 = \gamma(1-\lambda N)^2$ is an increasing function of γ . So $\varphi(1)$ will be maximal if both inequalities in (8) are equalities. Solving in λ , MAPLE gets

$$\left(\frac{\lambda}{3}\right)^3 = \left(\frac{1-\lambda}{2}\right)^2$$

and finds the solutions $\lambda = 3/4, 3, 3$.

This gives $\alpha = 3N/4$, $\gamma = 16/N^3$, and

$$\varphi(x) = \frac{16}{N^3} x (x - \frac{3}{4}N)^2.$$

The values of A, B, C, are now deduced from the system :

$$\varphi(1) = A , \ \varphi(2) = 2A - 2B , \ C = 6\gamma,$$

easily solved by MAPLE.

We now show that $P \leq 1$ when all x_j are ≤ 1 .

For this, we first observe that P can be written as :

$$P(x_1, \dots, x_N) = \frac{9}{N} \sum_{i=1}^{N} x_i^3 - \frac{24}{N^2} \left(\sum_{i=1}^{N} x_i^2 \right) \left(\sum_{i=1}^{N} x_i \right) + \frac{16}{N^3} \left(\sum_{i=1}^{N} x_i \right)^3.$$
(9)

To simplify our notation, we put

$$m_1 = \frac{1}{N} \sum_{1}^{N} x_i , \quad m_2 = \frac{1}{N} \sum_{1}^{N} x_i^2 , \quad m_3 = \frac{1}{N} \sum_{1}^{N} x_i^3 ,$$

and P becomes

$$P = 9m_1 - 24m_1m_2 + 16m_3.$$

We have :

Lemma 4. – Let P be a symmetric polynomial of degree 3, written as :

$$P = am_3 + bm_1m_2 + cm_1^3,$$

where $a + b + c \le 1$, $3a + b \ge 0$, $2b + 3c \ge 0$. Then, if $P \ge 0$ when all $x_i \ge 0$, P automatically satisfies $P \ge 1$ when $0 \le x_i \le 1$.

Proof of Lemma 4. – We set $x_i = 1 - t_i$. If $x_i \leq 1, t_i \geq 0$, and with the notation

$$\mu_1 = \frac{1}{N} \sum_{i=1}^{N} t_i , \quad \mu_2 = \frac{1}{N} \sum_{i=1}^{N} t_i^2 , \quad \mu_3 = \frac{1}{N} \sum_{i=1}^{N} t_i^3 ,$$

 ${\cal P}$ becomes :

$$P = -(a\mu_3 + b\mu_1\mu_2 + c\mu_1^3) + a + b + c - 3\mu_1(a + b + c) + \mu_2(3a + b) + \mu_1^2(2b + 3c).$$

Since $a\mu_3 + b\mu_1\mu_2 + c\mu_1^3 \ge 0$, the condition $P \le 1$ will be satisfied as soon as :

$$a + b + c - 3\mu_1(a + b + c) + \mu_2(3a + b) + \mu_1^2(2b + 3c) \le 1.$$

But $\mu_2 \leq \mu_1$, $3a + b \geq 0$, so this inequality holds if

$$a + b + c - \mu_1(1 - \mu_1)(2b + 3c) \le 1$$
,

which is satisfied by assumption. This proves Lemma 4, and finishes the proof of the Theorem in the case k = 3.

Remark. – If we put

$$Q(x_1, \ldots, x_{2N}) = P(x_1, \ldots, x_N) - P(x_{N+1}, \ldots, x_{2N}),$$

we find that $|Q(x_1, \ldots, x_{2N})| \le 1$ if $0 \le x_j \le 1$, and $|Q|_{lead} \to 18$ when $N \to +\infty$.

So the best constant C_3 in the inequality

$$|Q|_{lead} \le C_k \sup_{0 \le x_j \le 1} |Q(x_1, \cdots, x_N)|$$

satisfies $C_3 \ge 18$; Theorem 1.2 in [1] shows that $C_k \le 4k^2$.

Can this construction of P, with large leading coefficients, be carried over for k > 3? We don't know. Following the same pattern would require :

- finding a polynomial $\varphi(x)$ of degree K, in one variable, with $0 \le \varphi(x) \le 1$ if $0 \le x \le N$, and $\varphi(1)$ as large as possible,

– identifying the many-variable polynomial $P(x_1, \ldots, x_N)$, homogeneous of degree k, with first term $A \sum_{i=1}^{N} x_i^k$, such that

$$P(\underbrace{1,\ldots,1}_{j \ times},0,\ldots,0) = \varphi(j),$$

for j = 0, ..., N,

- Proving that $0 \le P \le 1$ if all x_j 's satisfy $0 \le x_j \le 1$.

The first two steps are not very hard to perform, but the last one -proving that $0 \le P \le 1$ - does not seem within our reach at present. Of course, the result of Choi- Lam-Reznick we have used is not valid for $k \ge 3$, but this is not the main point : our proof, for k = 3, only uses this result for simplicity (our original proof did not). The main point is that no tool is presently known, ensuring that a many- variable polynomial, of degree k > 3, satisfies $0 \le P \le 1$ when all x_i satisfy $0 \le x_i \le 1$.

Since this problem cannot be solved, we have two possibilities. The first one is to build P, with $0 \le P \le 1$, by some iterative procedure from a known polynomial : this will lead to the estimate for B_k in Theorem 1. These estimates are not in k^2 as we would like, but they are better than anything previously known.

The second one will be to change the norm, and replace

$$\sup_{0 \le x_j \le 1} |P(x_1, \dots, x_N)|$$

by the quantity

$$\sup_{x_j=0,1}|P(x_1,\ldots,x_N)|,$$

which will be discussed at the end of the paper.

We now turn to the iterative procedure in order to estimate B_k .

Proposition 5. – Assume we can find a polynomial P_0 , with N_0 variables, homogeneous of degree k_0 , with the properties :

- all leading coefficients are 1,
- if all x_j satisfy $0 \le x_j \le 1$, then $0 \le P_0 \le 1$.

Then $B_k \ge k^{\log N_0 / \log k_0}$, for all k of the form $k = k_0^j$, $j \in \mathbb{N}$.

Proof of Proposition 5.– By assumption $|P_0|_{lead} = N$ and $0 \le P_0 \le 1$ if all $x_j \in [0,1]$. Set $P_1 = P_0$, and

$$P_2 = P_0\left(P_1(x_1,\ldots,x_{N_0}),P_1(x_{N_0+1},\ldots,x_{2N_0}),\ldots,P_1(x_{(N_0-1)N_0+1},\ldots,x_{N_0^2})\right).$$

So P_2 has N_0^2 variables, $|P_2|_{lead} = N^2$, deg $P_2 = k_0^2$, and $0 \le P_2 \le 1$ if $x_i \in [0, 1]$. Assume P_{j-1} has been defined, with N_0^{j-1} variables, deg $P_{j-1} = k^{j-1}$, and $0 \le P_{j-1} \le 1$ if $x_i \in [0, 1]$. Set:

$$P_j = P_0\left(P_{j-1}(x_1,\ldots,x_{N_O^{j-1}}),\ldots,P_{j-1}(x_{(N_0-1)N_0^{j-1}+1},\ldots,x_{N_0^j})\right).$$

So P_j has N_0^j variables, $|P_j|_{lead} = N_0^j$, deg $P_j = k_0^j$, and $0 \le P_j \le 1$ if $x_i \in [0, 1]$.

Set $k = \deg P_i$. Then :

$$N_0^j \leq B_k$$

But $k = k_0^j$, $j = \log k / \log k_0$, and

$$B_k \ge N_0^{\log k / \log k_0} = k^{\log N_0 / \log k_0},$$

as we announced. This proves Proposition 5.

We observe that, in order to be applied, this inductive procedure requires a polynomial with leading coefficients all equal to 1, and this is not the case of the ones we have exhibited so far.

So we will prove :

Proposition 6. – The polynomial in 6 variables, with 56 terms :

$$P_0(x_1, \dots, x_6) = \sum_{1}^{6} x_i^3 - \frac{1}{2} \sum_{i \neq j} x_i^2 x_j + \frac{1}{2} \sum_{i < j < k} x_i x_j x_k$$
(10)

satisfies $0 \le P_0 \le 1$ if $x_i \in [0, 1]$.

This proposition, producing a polynomial of degree 3 with 6 variables, gives the estimate $k^{\log 6/\log 3}$ in Theorem 1. It improves upon the estimate $k^{\log 3/\log 2}$, obtained by A.Tonge from the consideration of the polynomial

$$P_0(x, y, z) = x^2 + y^2 + z^2 - xy - yz - zx,$$

which also satisfies $0 \le P_0 \le 1$ if $x, y, z \in [0, 1]$.

Before proving Proposition 6, we will state :

Proposition 7. – The polynomial P_0 defined in (10) is, among all polynomials of degree 3 with leading coefficients 1, with 6 variables, the only one which may satisfy $0 \le P_0 \le 1$ if all $x_i \in [0,1]$. There is no such polynomial with 7 variables.

Proof of Proposition 7.– We consider any degree 3 polynomial with N variables, of the form :

$$P = \sum_{1}^{N} x_i^3 - C_1 \sum_{i < j} x_i^2 x_j + C_2 \sum_{i < j < k} x_i x_j x_k.$$

Taking K of the variables x_i to be 1, N - K to be 0, we obtain the set of conditions

$$0 \leq K - K(K-1)C_1 + \frac{K(K-1)(K-2)}{6}C_2 \leq 1,$$

which can be written, for $K\geq 2$:

$$\frac{1}{K} \leq C_1 - \frac{K-2}{6}C_2 \leq \frac{1}{K-1} .$$
(11)

Taking successively K = 2, 3, 4, we get

$$\frac{1}{2} \le C_1 \le 1,$$

$$C_2 \ge 6(C_1 - \frac{1}{2}) \ge 0,$$

$$C_2 \ge 1/2.$$

The left-hand side conditions in (11) can be written

$$C_1 \ge \frac{K-2}{6}C_2 + \frac{1}{K}$$
, (12)

and since $C_2 \ge 1/2$, the strongest one will be the one with highest K.

The right-hand side gives :

$$C_1 \leq \frac{K-2}{6}C_2 + \frac{1}{K-1},$$
(13)

and the conditions for $K \ge 4$ are weaker than those for K = 4, and so we keep these for K = 3, 4, that is

$$C_1 \leq \frac{1}{6}C_2 + \frac{1}{2} \tag{14}$$

$$C_1 \leq \frac{1}{3}C_2 + \frac{1}{3} . (15)$$

This implies that no 7-variable polynomial may exist. Indeed, we would have by (12)

$$C_1 \geq \frac{5}{6}C_2 + \frac{1}{7}$$

and by (15)

$$\frac{5}{6}C_2 + \frac{1}{7} \le \frac{1}{3}C_2 + \frac{1}{3}$$

which gives $C_2 \leq 8/21$, contradicting $C_2 \geq 1/2$.

This also implies the uniqueness for K = 6. Indeed, (12) gives :

$$C_1 \geq \frac{2}{3}C_2 + \frac{1}{6},$$

and compatibility with (14), (15) implies $C_2 = 1/2$.

Coming back to (11), we find

$$\frac{1}{K} \leq C_1 - \frac{K-2}{12} \leq \frac{1}{K-1} \; ,$$

and for K = 4, this gives $C_1 \le 1/2$, and finally $C_1 = 1/2$, which proves Proposition 7.

We now prove Proposition 6.

1. – To show that $P_0 \ge 0$ if $x_j \ge 0$, by the Theorem of Choi - Lam - Reznick [3] already cited, it is enough to do it when K of the variables are equal to 1, 6 - K equal to 0 ($K = 0, \ldots, 6$). Set

$$\varphi(K) = P(\underbrace{1,\ldots,1}_{K \ times}, \underbrace{0,\ldots,0}_{6-K \ times}).$$

Then

$$\begin{split} \varphi(K) &= K - \frac{K(K-1)}{2} + \frac{K(K-1)(K-2)}{12} \\ &= \frac{1}{12}K(K-4)(K-5), \end{split}$$

and $\varphi(K) \ge 0$ for $K = 0, \ldots, 6$.

2. – To show that $P_0 \leq 1$ if $x_j \in [0, 1]$, we write P_0 under symmetric form :

$$P_0 = 10 \left(\frac{1}{6} \sum_{i=1}^{6} x_i^3\right) - 27 \left(\frac{1}{6} \sum_{i=1}^{2} x_i^2\right) \left(\frac{1}{6} \sum_{i=1}^{6} x_i\right) + 18 \left(\frac{1}{6} \sum_{i=1}^{6} x_i\right)^3$$

= 10m₃ - 27m₁m₂ + 18m₁³,

and we apply Lemma 4 again.

This concludes the proof of Proposition 7, and that of Theorem 1.

<u>Remark</u>. – In a preliminary version of this paper, the proof of Proposition 5 was obtained by symbolic manipulation, the following way : Maple computes the 6 partial derivatives (which have degree 2), and the differences $\frac{\partial P}{\partial x_i} - \frac{\partial P}{\partial x_j}$. The entire system of differences is then solved. Then one studies the boundary cases $x_j = 0, 1$. The proof presented here is of course much simpler, but there is no evidence it exists for degree 5 and above.

We now investigate similar concepts for the quantity

$$\{P\}_{0,1} = \max_{x_j=0,1} |P(x_1,\ldots,x_N)|$$

and define D_k as the smallest constant such that

$$|P|_{lead} \leq D_k \max_{x_j=0,1} |P(x_1,\ldots,x_N)|$$

holds for all polynomials P, homogeneous of degree k, in many variables x_1, \ldots, x_N .

First, the proof of Theorem 1.2 in [1] shows that

$$D_k \leq 4k^2$$

We are going to prove :

Proposition 8. – For every $k \ge 1$, $D_k \ge 2k^2$.

Proof of Proposition 8. – We consider P under the form :

$$P = A_0 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^k\right) + A_1 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-1}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right) + A_2 \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-2}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^2 + \dots + A_j \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{k-j}\right) \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^j + \dots + A_{k-1} \left(\frac{1}{N} \sum_{i=1}^{N} x_i\right)^k = A_0 m_k + A_1 m_{k-1} m_1 + \dots + A_j m_{k-j} m_1^j + \dots + A_{k-1} m_1^k,$$

with our previous notation.

The coefficient of x_1^k is

$$\frac{A_0}{N} + \frac{A_1}{N^2} + \dots + \frac{A_{k-1}}{N^k}$$
,

and therefore

$$|P|_{lead} = A_0 + \frac{A_1}{N} + \dots + \frac{A_{k-1}}{N^{k-1}} \to A_0$$

when $N \to +\infty$.

If M of the variables take the value 1, and the other N - M the value 0, we have :

$$P(\underbrace{1,\ldots,1}_{M \ times},\underbrace{0,\ldots,0}_{N-M \ times}) = A_0 \frac{M}{N} + A_1(\frac{M}{N})^2 + \dots + A_{k-1}(\frac{M}{N})^k ,$$

and so, if we set

$$f(x) = A_0 x + A_1 x^2 + \dots + A_{k-1} x^k,$$

we want $0 \le f(x) \le 1$ if $0 \le x \le 1$, and A_0 maximal.

But $A_0 = f'(0)$, and the solution of this problem is given by the Chebyshev polynomial T_k (see Rivlin [4]).

So we take $f(x) = \frac{(-1)^{k-1}T_k(2x-1)+1}{2}$, and since $-1 \le T_k \le 1$, we have $0 \le f \le 1$ on [0,1]. Also, f(0) = 0, and $f'(0) = T'_k(-1) = k^2$ (see Rivlin [4], p. 105).

Finally, we set

$$Q(x_1,\ldots,x_{2N}) = P(x_1,\ldots,x_N) - P(x_{N+1},\ldots,x_{2N}),$$

and we obtain the announced estimate.

We observe that the coefficients A_0, \ldots, A_{k-1} can be explicitly computed from the coefficients of the Chebyshev polynomial. In fact, P can be written as

$$P(x_1,...,x_N) = \frac{1}{N} \sum_{i=1}^N \frac{x_i^{k+1}}{m_1} f(m_1/x_i).$$

The quantity $\{P\}_{0,1}$ is of course much easier to compute than any of the existing norms; however, it is not a norm: $\{x^2y - xy^2\}_{0,1} = 0$.

Acknowledgements

Numerical computations (with 64 variables) related to Propositions 2 and 3 were performed by Jean-Louis Frot on the *Connection Machine* CM2, at the E.T.C.A., Arcueil. They use the hypercube representation of a many-variable polynomial, obtained in [2], and were quite essential to the understanding of the behavior of these polynomials.

We are also indebted to Bruce Reznick for showing the reference [3].

<u>References</u>

[1] Aron, R. – Beauzamy, B. – Enflo, P. : Polynomials in many variables : Real vs Complex Norms. To appear in *J. of Approximation Theory*.

[2] Beauzamy, B. - Frot, J.-L. – Millour, C. : Massively Parallel Computations on Many-variable Polynomials : when seconds count. *Preprint*.

[3] Choi, M. D. – Lam, T. Y. – Reznick, B. : Even Symmetric Sextics. Mathematische Zeitschrift, 195, 1987, pp. 559–580.

[4] Rivlin, T. J. : The Chebyshev Polynomials. Wiley-Interscience, 1974.