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0. Introduction.

In Symbolic Computation, most systems, such as MACSYMA, have nice features allowing to find the
roots of a polynomial. The coefficients may be real or complex, algorithms such as “ALLROOTS” allow to
give a list, with prescribed accuracy, of all the roots of the polynomial, and these algorithms work quite well
when the degree is not too high.

Things are not so satisfactory when we deal with complex functions which are not just polynomials, such
as functions which are analytic inside the open unit disk D . These functions may be for instance bounded
almost everywhere on the unit circle (these are H∞ functions), or in the classical L2 space on the circle
(these are H2 functions). Such a function has an infinite Taylor expansion

f(z) =
∞∑
0

ajz
j , with

∞∑
0

|aj |2 < ∞,

and they arise quite naturally, for instance in signal analysis.

But no matter whether the function is defined by a Taylor series, or by a single term (such as exp{−(1+
z)/(1−z)}), symbolic computation does not allow us, so far, to find its zeros. Indeed, there can be infinitely
many, consisting in a sequence converging to the unit circle. So a first step is to know how many zeros there
are in each disk D(r), centered at 0, with radius r < 1.

But a function in H2 may have an arbitrary large number of zeros in (for instance) D(1/2), or in any
D(r), 0 < r < 1. So we need to find an a priori classification of the H2 functions, that is to build a
sequence of classes Cn of functions, very simply defined (so anyone can decide at first glance to which class
a given function belongs), and with the following property : if f is in Cn , it has at most n zeros in D(1/2)
(for instance). Then, when such a classification has been constructed, one can expect to build algorithms
allowing us to find all the zeros in D(1/2).

The key concept for such a classification is that of concentration at low degrees for an H2 function, a
concept due to P. Enflo and the author, and which has already proved to be useful in various areas, such
as Jensen’s inequality (Beauzamy [2], Rigler–Trimble–Varga [8]), products of polynomials in one variable
(Beauzamy- Enflo [1]) or in many variables (Beauzamy–Bombieri–Enflo–Montgomery [3]).

Let’s look at the converse problem : we want to eliminate all the points z in the open disk where
|f(z)| < ε . Of course, the set of zeros has Lebesgue measure 0, but this is useless for the computer, which
does not understand Lebesgue measure. On the real line, it would eliminate a few intervals, and say that
on what remains the function is large, say |f(t)| ≥ 1/10, except on I1 , . . . ,Ik . This is also what we do in
the complex domain, but the intervals will be replaced by small circles, and here again a theoretical problem
arises from the fact there can be infinitely many.

So the key notion for this study will be :
There is a function φ(ε) , with φ(ε) → 0 when ε → 0 , such that the set {|f(z)| < ε} can be covered by

a union of disks, with sum of radii < φ(ε) .

But such a statement cannot hold in general for H2 functions, if we take no precaution : just the
functions fn(z) = zn , n = 1, 2, . . . become smaller and smaller on D(1/2), though ‖fn‖2 = 1 for all n . So
here again we need a classification of H2 functions, and one function φ(ε) in each class. The classification
will be the same as before, and will depend on the concentration at low degrees.
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Let f =
∑

j≥ ajz
j , with

∑
j |aj |2 < ∞ be a function in H2 . Let k ∈ NI , 0 < d ≤ 1. We say that f

has concentration d at degree k if : ( k∑
0

|aj |2
)1/2 ≥ d

( ∞∑
0

|aj |2
)1/2

. (0.1)

This concept was introduced by Per Enflo and the author in [1], where it was used in order to obtain, for
products of polynomials, estimates from below independent of the degrees.

In § 1, we study the canonical decomposition : if f has concentration d at degree k , what can be
said about its Blaschke term, singular factor, outer factor ? We see that for the singular and outer parts,
concentration at degree k implies concentration at degree 0. We deduce that these two functions can be
bounded from below, in any disk D(r) (0 < r < 1), by a number which depends only on d , k , r .

In § 2, we study the zeros of H2 functions with concentration at low degrees. It’s well-known that the
zeros αn of any H2 function must satisfy

∑
1−|αn| < ∞ , so if there are infinitely many, they must converge

to the unit circle. But no special speed is required, except for this condition. If we assume concentration d

at degree k for the function, we will be able to give a minimal speed of convergence, and find a bound for
the number of zeros in any disk D(r), depending only on d , k , r .

Let again f be a function with concentration d at degree k . In § 3, we compute the measure of the set
where {|f(z)| < ε} , and we give estimates depending only on the concentration data. In § 4, we show that
this set can be covered by a reunion of disks, with sum of radii tending to zero when ε → 0 : this extends
an old result of Henri Cartan.

Let’s now introduce some norms which we will need. First,

‖f‖2 =
(∫ 2π

0

|f(eiθ)|2 dθ

2π

)1/2

, (0.2)

is the H2 norm, which is the same as :

|f |2 =

( ∞∑
0

|aj |2
)1/2

.

We also introduce, for a polynomial P (z) =
∑

j≥0 bjz
j ,

‖P‖∞ = sup
θ∈Π

|P (eiθ)|,

|P |1 =
∑

j

|bj |,

|P |∞ = max
j
|bj |.

Finally, for f ∈ H2 written as before, we define the partial sums by :

sk(f) =
k∑
0

ajz
j , k = 0, 1, 2, . . . (0.3)

So concentration d at degree k (measured in the L2 norm) means that :

|sk(f)|2 ≥ d |f |2 . (0.4)

We finally introduce :

cfk(f) =
‖sk(f)‖2

‖f‖2
.

The number cfk(f) is called the concentration factor of f at degree k (measured using the L2 norm).
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1. The canonical decomposition.

As it is well-known (see for instance Garnett [6]), any function in H1 (and therefore in H2 ) has a
canonical factorization

f = m · F, (1.1)

where m is inner and F is outer. The inner factor m can itself be factored into :

m = B · S, (1.2)

where B is a Blaschke product and S a singular inner function.

The following very simple proposition shows what are the concentrations for each factor separately.

Proposition 1.1. – Assume that f has concentration d at degree k . Then :

‖sk(m)‖∞ ≥ d, (1.3)

‖sk(F )‖2 ≥ d ‖F‖2 . (1.4)

Proof. – We use a very simple lemma :

Lemma 1.2. – For any functions g , h in H2

‖sk(gh)‖2 ≤ ‖sk(g) · sk(h)‖2 , (1.5)

and also

‖sk(gh)‖2 ≤ ‖g · sk(h)‖2 . (1.6)

Both estimates are obvious, since the coefficients in sk(gh) depend only on those of sk(g) and sk(h),
and since the norm | · |2 is monotone unconditional : for any f , |sk(f)|2 ≤ |f |2 .

We now prove Proposition 1.1. Assume ‖f‖2 = 1, ‖sk(f)‖2 ≥ d . Then :

d ≤ ‖sk(f)‖2 = ‖sk(mF )‖2 ≤ ‖sk(m) · F‖2 ≤ ‖sk(m)‖∞ · ‖F‖2 = ‖sk(m)‖∞ ,

since ‖F‖2 = ‖f‖2 = 1.
Inequality (1.4) is proved the same way, using the fact that ‖m‖∞ = 1.

The same applies to any factor of the inner function : if m1 is such a factor, similar reasoning gives
immediately :

‖sk(m1)‖∞ ≥ d.

Corollary 1.3. – If f has concentration d at degree k ,

|sk(m)|2 ≥ d√
k + 1

. (1.7)

Proof. – Indeed,
d ≤ ‖sk(m)‖∞ ≤ |sk(m)|1 ≤

√
k + 1 |sk(m)|2 .

Corollary 1.4. – Let

B(z) =
n∏
1

αj − z

1− ᾱjz

be a finite Blaschke product. Then, for every k ≥ n ,

‖sk(B)‖∞ ≥ 1.

Proof. – Set f =
∏n

1 (αj − z). Then f has concentration 1 at degree k , for every k ≥ n , and its canonical
factorization is f = B · F , with F =

∏n
1 (1− ᾱjz).

4



Remark. – This result does not hold for k < n . Indeed, by a result of Carathéodory (Garnett [6], th. 2.1,
p. 6 (see the proof)), for any polynomial P of degree k , satisfying ‖P‖∞ ≤ 1, one can find a Blaschke
product B , consisting in a product of k + 1 terms, with sk(B) = P . So there are Blaschke products with
arbitrary small first partial sums.

We now see that, despite its very simple proof, estimate (1.7) is best possible :

Proposition 1.5. – For every k , there is a function f in H2 , with concentration d ≥ 1/
√

3 at degree k ,

and such that in its canonical factorization the inner factor m satisfies :

|sk(m)|2 =
1√

k + 1
.

Proof. – We consider two polynomials :

P (z) =
1

k + 1

k∑
0

zj

Q(z) =
1√

k + 1

k∑
0

zj .

Since their roots are on the unit circle, they are both outer functions. Moreover |Q|2 = 1. Set F = Q .
The polynomial P satisfies ‖P‖∞ = 1. By Carathéodory’s theorem (cited above), we can find a

Blaschke product B , which coefficients up to the k -th match those of P , that is which satisfies :

sk(B) = P.

We set f = B · F , and we have :

sk(f) = sk(B · F ) = sk(P ·Q),

and so :

|sk(f)|2 =
1

(k + 1)3/2
|sk

(
(

k∑
0

zj)2
)
|2

=
1

(k + 1)3/2
|
∑
n≤k

∑
i+j=n

zn|2

=
1

(k + 1)3/2

( k+1∑
n=0

n2
)1/2

≥ 1
(k + 1)3/2

(
(k + 1)3

3

)1/2

=
1√
3

.

Since conversely |f |2 = |Q|2 = 1, we see that f has concentration 1/
√

3 at degree k , and that

|sk(B)|2 = |P |2 =
1√

k + 1
,

which proves our claim.

5



Remark. – Define B(f), S(f), m(f) as the Blaschke part, singular part, inner part of the function f . We
have shown that :

inf{|sk(m(f))|2 ; f has concentration 1/
√

3 at degree k} =
1√

k + 1
,

and that :
inf{|sk(B(f))|2 ; f has concentration 1/

√
3 at degree k} =

1√
k + 1

,

but for the singular part, we only know that |sk(S)|2 ≥ d/
√

k + 1. So we can ask the following question :
what is

inf{|sk(S(f))|2 ; f has concentration d at degree k} ?

We now turn to a deeper study of the outer part F . Of course, in general, concentration d at degree k

does not imply concentration at any lower degree : z3 has concentration 1 at degree 3, and concentration
0 at degree 0, 1, 2. But for an outer function, concentration d at degree k automatically implies some
concentration at degree 0 :

Proposition 1.6. – If F is an outer function, satisfying ‖F‖2 = 1 , ‖sk(F )‖2 ≥ d , then :

|F (0)| ≥ d2

e232(k+1)
.

Proof. – We write F as

F (z) = exp
∫ 2π

0

eiθ + z

eiθ − z
log h(θ)

dθ

2π
,

where h ≥ 0 and log h ∈ L1 . We know that |F (eiθ)| = h(θ) a.e. . So we get :

F (0) = exp
∫ 2π

0

log h(eiθ)
dθ

2π

= exp
∫ 2π

0

log |F (eiθ)| dθ

2π
.

By Corollary 3.3 below, since F has concentration d at degree k ,∫ 2π

0

log |F (eiθ)| dθ

2π
≥ log

(
d

e3k

)2

.

Since F is outer, Jensen’s inequality is an equality, and we have :∫ 2π

0

log |F (eiθ)| dθ

2π
= log |F (0)|,

and the result follows.

Lemma 1.7. – Assume that F is outer and satisfies ‖F‖2 = 1 , |F (0)| ≥ ε . Then, in every disk of radius

r < 1 , we have :

|F (z)| ≥
(

ε√
e

)(1+r)/(1−r)

.

Proof of Lemma 1.7. – Write F as before, and set u(t) = log h(t). Let Pr be the Poisson kernel. Then,
for z = reiθ , we have :

|F (z)| = exp
∫ 2π

0

Pr(θ − t)u(t)
dt

2π

= exp
∫

u≤0

Pr(θ − t)u(t)
dt

2π
· exp

∫
u≥0

Pr(θ − t)u(t)
dt

2π
.
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But
exp

∫
u≥0

Pr(θ − t)u(t)
dt

2π
≥ 1,

so
|F (z)| ≥ exp

∫
u≤0

Pr(θ − t)u(t)
dt

2π
.

Since

Pr(θ − t) =
1− r2

1− 2r cos(θ − t) + r2
≤ 1 + r

1− r
,

we get

|F (z)| ≥ exp{1 + r

1− r

∫
u≤0

u(t)
dt

2π
} . (1.8)

But we have also :

ε ≤ |F (0)| = exp
∫ 2π

0

u(t)
dt

2π
= exp

∫
u≤0

u · exp
∫

u≥0

u ,

and ∫
u≥0

u =
∫

u≥0

log h(t)
dt

2π
=

1
2

∫
u≥0

log h(t)2
dt

2π

=
1
2

∫
u≥0

log |F (eit)|2 dt

2π
≤ 1

2

∫
|F |2 =

1
2

,

so
exp

∫
u≤0

u ≥ ε√
e

.

Coming back to (1.8), we find :

|F (z)| ≥ exp{1 + r

1− r
log

ε√
e
} ,

if |z| = r , and also of course if |z| ≤ r . This proves the lemma.

An outer function never vanishes in the open unit disk. However, even if we require ‖F‖2 = 1, there
is no universal lower bound for |F (0)| : for every ε > 0, we can find an outer function F with ‖F‖2 = 1
and |F (0)| = ε : just choose the function h with

∫
h2 = 1 and

∫
log h = log ε . But if we prescribe a

concentration at degree k , we get :

Theorem 1.8. – Assume that F is outer and satisfies

‖F‖2 = 1 , ‖sk(F )‖2 ≥ d.

Then, in every disk D(r) with r < 1 , it satisfies :

|F (z)| ≥
(

d2

e5/232k

)(1+r)/(1−r)

.

Proof. – This is now an obvious consequence of Proposition 1.6 and Lemma 1.7.

We observe that no bound can be given in the whole unit disk. Indeed, an outer function can vanish on
the unit circle : 1 + z has concentration 1/

√
2 at degree 0.

The estimates given by Theorem 1.8 are rather sharp. The order of magnitude in r and k cannot be
improved.
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Indeed, consider first the outer function :

F (z) = exp
∫ 2π

0

eiθ + z

eiθ − z
log h(θ)

dθ

2π
,

with h(θ) = 1, except if θ ∈ [−µ, µ] , where h(θ) = ε . The numbers µ and ε are related by the condition
(µ/π) log ε = log d , so when ε → 0, µ → 0. If ε ∼ 0, ‖F‖2 = 1. Moreover :

F (0) = exp{µ

π
log ε} = d,

so F has concentration d at degree 0.
If t ∼ 0,

Pr(t) =
1− r2

1− 2r cos t + r2
∼ 1 + r

1− r
,

so for µ ∼ 0, if z = r ,

|F (z)| = exp
∫ µ

−µ

1− r2

1− 2r cos θ + r2
log ε

dθ

2π
∼ exp{µ

π

1 + r

1− r
log ε} = d(1+r)/(1−r).

This shows that the estimate for r is best possible.

Next, consider

F (z) =
(1 + z)2k+1√(

4k+2
2k+1

) .

This is an outer function, with ‖F‖2 = 1, ‖sk(F )‖2 = 1/2.
For z = −1/2, we find, with n = 2k + 1,

F (z) =
1
2n

1√(
2n
n

) ∼ (πn)1/4

22n
∼ (2πk)1/4

4k
,

which shows that the order of magnitude in k is indeed exponential.

We now turn to a similar study for the singular functions. We first need an analogue of Proposition 1.6.

Proposition 1.9. – If S(z) is a singular function with |sk(S)|2 ≥ d , then

|S(0)| ≥ d2

26k
.

Proof. – We write

S(z) = exp
{
−
∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

}
,

where µ is a positive measure, singular with respect to Lebesgue measure. Let (µj)j∈ZZ be the Fourier
coefficients of µ . Then S(0) = e−µ0 , and since

eiθ + z

eiθ − z
= 1 + 2

∞∑
1

e−inθzn ,

we get
S(z) = e−µ0e−2

∑∞
1

µnzn

.
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We now compute the Taylor series of exp{−2
∑

n≥1 µnzn} . Using L. Comtet [5], we write :

exp

{ ∞∑
n=1

xntn

n!

}
= 1 +

∑
n≥1

Yn(x1, x2, . . .)
tn

n!
,

where Y0 = 1, and, for n ≥ 1,

Yn =
n∑

l=1

Bn,l(x1, x2, . . .),

with
Bn,l(x1, x2, . . .) =

∑
c1+2c2+3c3+···=n

c1+c2+c3+···=l

n!
c1!c2! · · · (1!)c1(2!)c2 · · ·

xc1
1 xc2

2 · · ·

Here we have xn = −2µnn! , and |µj | ≤ µ0 , since the measure is positive. So we find :

|Bn,l(x1, x2, . . .)| ≤ 2lµl
0Bn,l(1!, 2!, . . .).

But

Bn,l(1!, 2!, . . .) =
(

n− 1
l − 1

)
n!
l!

.

So, for the k -th partial sum of S , we obtain :

|sk(S)|1 ≤ e−µ0
(
1 +

k∑
n=1

n∑
l=1

(
n− 1
l − 1

)
2lµl

0

l!
)

≤ e−µ0
(
1 +

k∑
l=1

(
k∑

n=l

(
n− 1
l − 1

)
)
2lµl

0

l!
)
.

But
∑k

n=l

(
n−1
l−1

)
≤ 2k , and

k∑
l=0

tl

l!
≤ 4ket/4 .

Therefore :
|sk(S)|1 ≤ e−µ023keµ0/2 = e−µ0/223k .

The assumption |sk(S)|2 ≥ d implies :
d ≤ 23ke−µ0/2 ,

from which follows :

|S(0)| = e−µ0 ≥ d2

26k
.

We also have an analogue of Lemma 1.7 :

Lemma 1.10. – If S is a singular function and if |S(0)| ≥ ε , then in every disk D(r) with r < 1 ,

S(z) ≥ ε
1+r
1−r .

Proof. – Indeed, as in the proof of Lemma 1.7,

|S(z)| = exp{−
∫

Pr(θ − t) dµ(t)}

≥ exp{−1 + r

1− r

∫
dµ(t)} = exp{−1 + r

1− r
µ0} .

Since −µ0 ≥ log ε , the lemma follows.
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As previously, we deduce immediately from Proposition 1.9 and Lemma 1.10 :

Theorem 1.11. – Assume that S is a singular function with

‖sk(S)‖2 ≥ d.

Then in every disk D(r) with r < 1 it satisfies :

|S(z)| ≥
( d2

26k

)(1+r)/(1−r)
.

Here again, the estimates cannot hold in the whole unit disk. For instance, if µ is the Dirac measure
δ0 , we obtain the singular function

S(z) = exp{−1 + z

1− z
} ,

and if z = reiθ , |S(z)| = exp{−Pr(θ)} . If z is real, say z = r ,

|S(z)| = exp{−1 + r

1− r
} ,

which tends to 0 when r → 1− . So, though |S(eiθ)| = 1 a.e. , there are points at which |S(eiθ)| = 0. The
geometry of the set where |S(z)| is small will be studied in § 3.

Of course, no result such as theorem 1.8 or theorem 1.11 may hold for Blaschke products, since their
zeros are precisely inside the unit disk. But if we assume some concentration at low degrees, at lot can be
said about their repartition. This topic will be studied in the coming paragraph.

2. The zeros of H2 functions with concentration at low degrees.

Let, as before, f =
∑∞

0 ajz
j , with

∑
|aj |2 < ∞ , be a function in H2 . The number of zeros of f inside

any disk D(0, r), centered at 0, with radius r < 1, is of course finite, but it can be arbitrary large : any
Blaschke product with prescribed zeros in this disk provides such a function, with moreover ‖f‖∞ = 1.

Let (αn)n≥1 be the enumeration of the zeros of f in the open unit disk, written in increasing order of
moduli

|α1| ≤ |α2| ≤ |α3| ≤ · · · ,

each of them being repeated according to its multiplicity. The sequence of zeros must satisfy
∑

n 1−|αn| < ∞ ,
but, as we already said, this condition is the only one valid in general. It does not allow, of course, any
prediction on how large the n -th zero is.

For entire functions, estimates do exist for the rate of growth of the zeros to infinity, depending on the
order and type of the function (see B. Levin [7]).

We will show here that, again, the concept of concentration at low degrees provides a satisfactory
description for a scale of growth.

This question was originally studied by Sylvia Chou in [4], where the concentration was measured with
the l1 norm :

k∑
0

|aj | ≥ d
∑
j≥0

|aj |.

She showed that for a polynomial satisfying this estimate, there is a closed disk of radius R(d, k) > 0, in
which it has at most k + 1 roots. She gave precise lower and upper estimates of this radius, and computed
it exactly for the class of Hurwitz polynomials.
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Our frame, here, is more general, since the concentration is measured with the l2 norm. Moreover, we
compute the number of zeros inside any disk of radius r < 1. Our methods are completely different and
rely upon the canonical factorization (since here we don’t have

∑
|aj | < ∞). The estimates in both cases

cannot be deduced one from the other.

We now turn to the description of the results. Most of them were originally discussed with S. Dobyinsky
and J.-B. Baillon.

Theorem 2.1. – Let d , 0 < d ≤ 1 , k ∈ NI , r , 0 < r < 1 . In the open disk of center O, radius r , the

number of zeros of any function in H2 with concentration d at degree k is at most :

N(d, k, r) = min
0<x<1

log 1/d− k log x

log 1+xr
x+r

. (2.1)

An upper bound for this number is therefore :

N(d, k, r) ≤ log 1/d− k log r

log 1+r2

2r

. (2.2)

For r = 0, N(d, k, 0) = k , and for r = 1, N(d, k, 1) = +∞ ; both results are obvious, since f may
have O as a multiple zero of order k , and since the number of zeros in the unit disk is unbounded : the
polynomials 1 + 2zn have concentration 1/

√
5 at degree 0 and have n roots inside the open unit disk.

We also observe that for k = 0, the result is well-known (see B. Levin [7], th. 5 p. 14), and follows
readily from Jensen’s formula :

|a0|
∏

|αn|≤1

1
|αn|

≤ M(f),

where M(f) is Mahler’s measure of f , that is

M(f) = exp
∫ 2π

0

log |f(eiθ)| dθ

2π
.

Indeed, since M(f) ≤ ‖f‖2 , and since |a0| ≥ d ‖f‖2 , we get :

∏
|αn|≤r

1
|αn|

≤ 1
d

,

which implies that the number of zeros inside D(0, r) is at most

N(d, 0, r) =
log 1/d

log 1/r
, (2.3)

which is precisely the result given by formula (2.1) for k = 0.

The theorem can be proved by induction on k , but this leads to poor estimates, so we prefer to
give a direct proof, the idea of which was suggested to us by L. Carleson, who also pointed out that any
normalization (instead of the l2 norm) stronger than the Nevanlinna class would lead to results of the same
nature (though quantitatively different).
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Proof. – We may assume that f does not vanish at zero. Indeed, if it does, we can either approximate the
function by another one which does not, or divide it by some zl , and then observe that

N(d, k − l, r) + l ≤ N(d, k, r).

Let
0 < |α1| ≤ |α2| ≤ · · · ,

be an enumeration of the zeros of f inside the open unit disk. We write the corresponding Blaschke product :

B(z) =
∞∏
1

ᾱi

|αi|
αi − z

1− ᾱiz
,

and the corresponding decomposition :
f = B · S · F ,

where S is a singular function and F an outer function.
Moreover, for fixed r , 0 < r < 1, we further decompose B into :

B′(z) =
∏

|αi|<r

ᾱi

|αi|
αi − z

1− ᾱiz
,

B′′(z) =
∏

|αi|≥r

ᾱi

|αi|
αi − z

1− ᾱiz
.

If f ∈ H2 and 0 < R ≤ 1, we put fR(z) = f(Rz). Then the Fourier coefficients of fR are :

cj(fR) = Rjcj(f) , j = 0, 1, . . . (2.4)

To prove the theorem, we may assume |f |2 = 1. Then |sk(f)|2 = d , and therefore, by (2.4), for any R ,
0 < R ≤ 1,

|sk(fR)|2 ≥ d Rk . (2.5)

From the decomposition :
fR = B′

R ·B′′
R · SR · FR ,

follows
|sk(fR)|2 ≤ |fR|2 ≤ ‖B′

R‖∞ · ‖B′′
R‖∞ · ‖SR‖∞ · |FR|2 . (2.6)

But since B′′ and S are inner functions,

‖B′′
R‖∞ ≤ 1 , ‖SR‖∞ ≤ 1,

and
|FR|2 ≤ |F |2 = |f |2 = 1.

If |α| ≤ r , |z| ≤ R , a simple computation shows that :∣∣∣∣ α− z

1− ᾱz

∣∣∣∣ ≤ r + R

1 + rR
. (2.7)

Let N be the number of zeros of f inside the open disk D(0, r), that is, the number of terms in B′ . We
deduce from (2.5), (2.6), (2.7) :

dRk ≤
(

r + R

1 + rR

)N

,

that is :

N ≤
log 1

d + k log 1
R

log 1+rR
r+R

,

and since R is arbitrary, we obtain the result.
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Remark. – In the case k = 0, the result is best possible. Indeed, if we consider a finite Blaschke product :

B(z) =
(

r − z

1− rz

)N

,

it satisfies |B|2 = 1, B(0) = rN , and so has concentration d at degree 0 if

N =
log 1/d

log 1/r
.

There is another proof of the Theorem (giving the same estimate), using the following result (to be
proved in Lemma 4.9 below) : for 0 < R < 1, there is a z0 , |z0| = R , such that if we set z = w−z0

1−z̄0w , the
function f̃(w) = f(z) has concentration dRk at degree 0, when f has concentration d at degree k .

Assuming this, by Jensen’s formula as above, the number of zeros of f̃ in the disk {|w| ≤ r′} is at most

N =
log 1/d− k log R

log 1/r′
.

But the zeros of f satisfy
∣∣ αi−z0
1−ᾱiz0

∣∣ ≤ r′ , and so the number of αi ’s with |αi| ≤ r is at most N , if r+R
1+rR = r′ .

Minimizing over R gives the result.

We see that N(d, k, r) is proportional to k , which is of course satisfactory. However, the coefficient of
k is not sharp. For instance, for d = 1, f is just a polynomial of degree k , so we should have N(1, k, r) = k

for every r . But we find N(1, k, r) = 1+r
1−r k (since log x and 1/ log 1+xr

x+r are both increasing functions of x ,
the minimum is a limit when x → 1− ).

In fact, this lack of sharpness is due to the method itself : there is always a loss of concentration between
the function and the Blaschke product ; we will come back on this later.

What about the correct order of magnitude ? The estimate N(d, k, r) ≥ k is obvious, but let’s show
that N(d, k, r) ≥ αk , for some α > 1, if d < 1.

Indeed, consider P = (z + r)αk : it has αk roots of modulus r , and we will see that cfk(P ) → 1 when
k →∞ , if α is correctly chosen (α > 1, close enough to 1).

First, we observe that

‖P‖2 ≥ (1 + r)αk

√
αk + 1

.

Also :

1− cfk(P ) ≤ 1
‖P‖2

( αk∑
j=k

(
αk

j

)2

r2(αk−j)
)1/2

≤ 1
‖P‖2

(
αk

k

)
(
∞∑
0

r2j)1/2

≤ 1
‖P‖2

√
1

1− r2

(
αk

k

)
Using Stirling’s formula, we write :(

αk

k

)
∼
(

αα

(α− 1)α−1

)k√
α

2π(α− 1)k
.

So we see that cfk(P ) → 1 when k →∞ , if we choose α so that

αα

(α− 1)α−1

1
(1 + r)α

< 1.
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Setting α = 1 + 1/n , this is equivalent to

n1/(1+n)(1 +
1
n

) < 1 + r.

For r = 1/2, this holds for n ≥ 7, which gives α = 8/7. The correct order of magnitude is therefore between
1.14k and 3.1k .

There is no clear comparison between the polynomial P = (z+α)n and the Blaschke term B = ( α+z
1+ᾱz )n ,

in terms of concentration at a given degree k . It depends strongly on k and n . For instance, for k = 0, the
concentration of P at degree 0 is small when n is large, and that of B can be made arbitrarily close to 1,
and, for k = 1, z + α has concentration 1 at degree 1 and α+z

1+αz has concentration strictly less than 1.

From our first result, we now deduce lower estimates for the moduli of the zeros of f , written as before
in increasing order. Of course, for a function with concentration d at degree k , the first k zeros may be 0,
so such estimates can start only with |αk+1| .

Theorem 2.2 – Let d , 0 < d ≤ 1 , and k ∈ NI . Let f be an H2 -function with concentration d at degree

k . Then, for every j ≥ 1 , its k + j -th zero satisfies the estimate :

|αk+j | ≥
jd1/j

e(k + j)
.

Proof. – For fixed d , k , we write N(r) instead of N(d, k, r). It is of course an increasing function of r .
Take any r such that :

N(r) < k + j ,

this means that |αk+j | ≥ r . Thus, if N ′(r) is any increasing function with N(r) ≤ N ′(r), any r for which
N ′(r) < k + j gives a lower bound for |αk+j | .

We are looking for the largest r such that

min
0<x<1

log 1/d− k log x

log 1+xr
x+r

< k + j,

or –which is the same–, for the largest r such that, for some x ,

log
1
d
− k log x < (k + j) log

1 + xr

x + r
,

which means :
1

dxk
<

(
1 + xr

r + x

)k+j

. (2.8)

This will hold as soon as
1

dxk
≤ 1

xk+j

(
1

1 + r/x

)k+j

,

or for any λ > 0,
xjλ

dλ
≤
(

1
1 + r/x

)(k+j)λ

.

But (
1

1 + r/x

)(k+j)λ

≥ 1− r(k + j)λ
x

.
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So we see that our inequality will be satisfied as soon as

xjλ

dλ
+

r(k + j)λ
x

≤ 1 .

Put r′ = r(k + j) and

y(x) =
xjλ

dλ
+

λr′

x
.

Then y reaches its minimum for x =
(

r′dλ

j

) 1
jλ+1

, and the value of this minimum is :

y =
r′

jλ/(jλ+1)

dλ/(jλ+1)

(
λj1/(jλ+1) + j−jλ/(jλ+1)

)
.

So condition 2.8 will hold if, for some λ > 0,

r′ ≤ d1/j
(
λj1/(jλ+1) + j−jλ/(jλ+1)

)−(jλ+1)/jλ

=
jd1/j

(jλ + 1)
jλ+1

jλ

.

In order to find the largest value for r′ , we set n = 1/(jλ), and find

min
n

j−1

(
1 +

1
n

)n+1

=
e

j
.

This gives to r′ the value 1
e jd1/j , and proves the theorem.

For j = 1, we find

|αk+1| ≥
d

e(k + 1)
, (2.9)

which we can compare to S. Chou’s result :
If P satisfies

k∑
0

|aj | ≥ d
∑
j≥0

|aj | , (2.10)

then

|αk+1| ≥
d

2e(k + 1)
. (2.11)

The estimate (2.9) seems better. But in fact, if (2.10) holds, we deduce for the l2 -norm :

(
k∑
0

|aj |2)1/2 ≥ d√
k + 1

(
∑
j≥0

|aj |2)1/2 ,

and thus by (2.9) :

|αk+1| ≥
d

e(k + 1)3/2
,

which is worse than (2.11). So in fact the l1 and the l2 situations correspond to different methods and
settings, and any attempt to deduce one from the other will provide bad estimates.
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The result (2.9) is quite sharp with respect to k , and with respect to d when d is small. Indeed,
consider :

P (z) = (z +
d

k + 1
)k+1 .

Then |αk+1| = d/(k + 1). Let’s now compute the concentration of P at degree k . We have :

|P (eiθ)|2 = 1 + 2
d

k + 1
cos θ +

d2

(k + 1)2
,

|eiθ +
d

k + 1
|2(k+1) = (1 + 2

d

k + 1
cos θ +

d2

(k + 1)2
)k+1

→ e2d cos θ , when k →∞.

Therefore, when k →∞ , ∫ π

−π

|eiθ +
d

k + 1
|2(k+1) dθ

2π
→

∫ π

−π

e2d cos θ dθ

2π

≥ 1 + 2d2

∫ π

−π

cos2 θ
dθ

2π

≥ 1 + d2 .

Since the degree of P is precisely k + 1,

|sk(P )|22
|P |22

=
|P |22 − 1
|P |22

= 1− 1
|P |22

≥ 1− 1
1 + d2

=
d2

1 + d2
,

so, when d is small,
|sk(P )|2
|P |2

≥ d√
1 + d2

∼ d.

For k = 0, our problem can easily be solved directly. We denote by α1(f) the first zero of f .

Proposition 2.3. – We have :

min{|α1(f)| ; f has concentration d at degree 0} = d,

this minimum is attained for the Blaschke term :

f(z) = c
d− z

1− dz
,

where |c| = 1 .

Proof. – We write the canonical decomposition :

f = B · S · F,

and B = B1 · B2 , with B1 consisting of a single factor (α1 − z)/(1 − ᾱ1z), B2 containing all other zeros
of f . Then :

|f(0)| = |B1(0)||B2(0)||S(0)||F (0)|.

Since |B2(0)| ≤ 1, |S(0)| ≤ 1, and |F (0)|/‖F‖2 ≤ 1, we find |B1(0)| ≥ d , which means |α1| ≥ d . Equality
holds only if |B2(0)| = |S(0)| = |F (0)|/‖F‖2 = 1, and this implies that all other factors are trivial.
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Let’s come back to the general setting : k ≥ 0, and let’s study the behavior of |αk+j | when j increases.
First, it’s quite interesting to observe that the estimate for |αk+2| is in

√
d , thus substantially different

from that of |αk+1| . This phenomenon has a reality, since the estimate of |αk+1| is sharp and since
√

d is
substantially bigger than d when d is small. But, quite obviously, when j →∞ , the estimates become less
and less precise since the given radius does not tend to 1.

In order to obtain estimates showing that |αk+j | tends to 1 when j → ∞ , we have to come back to
Theorem 2.1 and use computations of another type.

Theorem 2.4. – Let f be a function in H2 , with concentration d at degree k . Then, for every n > k ,

|αn| = rn(d, k) , where

rn(d, k) = inf{r ; r satisfies the equation N(d, k, r) = n}.

The number rn satisfies for every n > k the estimate

rn ≥ 1− 4
n

(log
1
d

+ k log 2),

and the asymptotic estimate, when n →∞ :

rn ≥ 1− 3
n

(log
1
d

+ k log 2).

Proof. – The first assertion is obvious. To obtain the first estimate, we let r = 1 − µ in formula (2.1). It
becomes :

min
0<x<1

log 1/d− k log x

log 1+xr
x+r

= min
0<x<1

log 1/d− k log x

log
(
1 + µ(1−x)

1+x−µ

)
≤ min

0<x<1

log 1/d− k log x

log
(
1 + µ(1−x)

1+x

)
≤ log 1/d + k log 2

log(1 + µ
3 )

≤ log 1/d + k log 2
µ/4

,

since 0 < µ < 1. Let’s now take

µ =
4
n

(log
1
d

+ k log 2) .

We have 1 − |αn| ≤ µ , and the estimate is proved. The asymptotic estimate is obtained the same way,
observing that, when µ → 0,

log(1 + µ
1− x

1 + x
) ∼ µ

1− x

1 + x
,

and taking x = 1/2.

Remark. – We conjecture that the correct estimate in Theorem 2.2 is

|αk+j | ≥
jd1/j

k + j
. (2.12)

This is compatible with Proposition 2.3 (case k = 0, j = 1), and would provide estimates showing directly
that |αk+j | → 1 when j →∞ . These estimates are also of the type

1− |αk+j | ∼
1
j

log
1
d

,

thus compatible with Theorem 2.4.

17



All the results of this paragraph, so far, are more or less satisfactory when d is small. Let’s now
investigate the following question : what happens when d → 1 ? Then the function f “tends” to become a
polynomial of degree k , so one might expect |αk+1| → ∞ . But this is wrong. Consider :

Pn = 1 +
1
n

zn .

The concentration at degree 0 is (1 + 1/n2)−1/2 → 1, when n →∞ , and all the roots have moduli tending
to 1. As we will see, this is the correct answer : all roots after the k + 1-st must get closer and closer to the
unit circle, when d approaches 1.

To obtain this result, we need to develop a different approach which does not rely on the canonical
factorization : even the conjectural estimates (2.12) do not show it.

This is due to the following phenomenon, which we already pointed out and which is easy to observe :
there may be a loss of concentration between the function and its Blaschke factor : we already mentioned
a factor 1/

√
k + 1, when k → ∞ , in § 1. But even for small values of k , it can be observed. Consider

P = a− z , with |a| < 1 ; it has concentration 1 at degree 1. Its canonical factorization is

P =
a− z

1− āz
· (1− āz).

The Taylor expansion of the Blaschke term is

a− z

1− āz
= a− (1− |a|2)(z + āz2 + ā2z3 · · ·),

and
cf1(B) =

(
|a|2 + (1− |a|2)2

)1/2
,

which takes
√

3/4 as minimal value. So there is a polynomial of degree 1 such that B has only concentration√
3/4 at degree 1. This shows clearly that it’s hopeless to use the canonical factorization in order to get

results when d is close to 1.

We now introduce new notations. Let f =
∑∞

0 ajz
j be, as before, an H2 function. We define :

σk(f) = (
k∑
0

|aj |2)1/2 , σ′k(f) = (
∞∑

k+1

|aj |2)1/2 ,

δk(f) =
σ′k(f)
σk(f)

.

Let dk = cfk(f) be the concentration factor of f at degree k . The numbers dk and δk are related by the
obvious formula :

δ2
k =

1− d2
k

d2
k

,

so if dk is close to 1, δk is close to 0. Let now g =
∑∞

0 bjz
j ∈ H2 , α ∈ CI , and set

f = (α− z)g.

Proposition 2.5. – If δk(f) < (1− |α|)/8 , then

δk−1(g) ≤ 4
1− |α|

δk(f) .
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Proof. – First, we write the Taylor expansion of f :

f(z) = αb0 + (−b0 + αb1)z + · · ·+ (−bj−1 + αbj)zj + · · · (2.13)

We write d instead of cfk(f), and δ instead of δk(f). We deduce from (2.13) :

∞∑
k+1

| − bj−1 + αbj |2 = δ2
(
|αb0|2 +

k−1∑
0

| − bj + αbj+1|2
)
. (2.14)

But :

|bk| ≤
∞∑
0

|α|j | − bk+j + αbk+j+1|

≤ (
∞∑
0

|α|2j)1/2 (
∞∑
0

| − bk+j + αbk+j+1|2)1/2

≤
(

1
1− |α|2

)1/2

(
∞∑
0

| − bk+j + αbk+j+1|2)1/2

So we deduce from (2.14) :

(1− |α|2)|bk|2 ≤
∞∑

k+1

| − bj−1 + αbj |2 ≤ 3δ2
k∑
0

|bj |2 ,

and this implies

|bk|2 ≤ 3δ2

1− |α|2 − 3δ2

k−1∑
0

|bj |2 . (2.15)

We also have

(
∞∑

k+1

| − bj−1 + αbj |2)1/2 ≥ (1− |α|)(
∞∑

k+1

|bj |2)1/2 ,

which implies
∞∑

k+1

|bj |2 ≤ 3δ2

(1− |α|)2
k∑
0

|bj |2 . (2.16)

Using (2.15), we deduce from (2.16)

∞∑
k+1

|bj |2 ≤ 3δ2

(1− |α|)2

(
1 +

3δ2

1− |α|2 − 3δ2

) k−1∑
0

|bj |2 . (2.17)

Using (2.15) once again, we finally obtain

∞∑
k

|bj |2 ≤
(

3δ2

(1− |α|)2

(
1 +

3δ2

1− |α|2 − 3δ2

)
+

3δ2

1− |α|2 − 3δ2

) k−1∑
0

|bj |2

≤ 6δ2

(1− |α|)(1− |α|2 − 3δ2)

k−1∑
0

|bj |2 ,

from which the Proposition follows immediately. We thank J.L. Frot for pointing out a mistake in an earlier
proof of this Proposition.

We can now prove :
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Theorem 2.6. – Let f be a function in H2 , with the zeros written in increasing order :

|α1| ≤ |α2| ≤ |α3| ≤ · · ·

Then the k + 1 -st zero αk+1 satisfies :

|αk+1| ≥ 1− 4δ1/(k+1) ,

with δ = δk(f) .

Proof. – The case k = 0 is left to the reader, and we assume k ≥ 1. We write

f = (α1 − z) · · · (αk − z)g.

We first observe that
|αk+1| ≥ cf0(g) . (2.18)

Indeed, αk+1 is the first zero of g . Jensen’s formula gives :

|g(0)|
∏

n≥k+1
|αn|≤1

1
|αn|

≤ M(g) ≤ |g|2 ;

but since ∏
n≥k+1
|αn|≤1

1
|αn|

≥ 1
|αk+1|

,

we deduce

|αk+1| ≥
|g(0)|
|g|2

,

as we claimed.
Since cf20(g) = 1/(1 + δ2

0(g)), we deduce from (2.18)

1− |αk+1| < δ2
0(g). (2.19)

We consider two cases :

Case 0. – |αk| ≥ 1− 4δ1/(k+1) .
Then a fortiori |αk+1| satifies the same estimate, and the theorem is proved, or

Case 1. – |αk| < 1− 4δ1/(k+1) .

We now consider this last case. Then also |α1|, · · · , |αk| satisfy this estimate, which implies

δ <
(1− |αk|)k+1

4k+1
. (2.20)

Set now f1 = f , f2 = (α2 − z) · · · (αk − z)g , . . . , fk = (αk − z)g , fk+1 = g .
Since δ < (1− |α1|)/8, Proposition 2.5 implies

δk−1(f2) <
4δ

1− |α1|
,

and by (2.20),
4δ

1− |α1|
<

1− |α2|
8

.
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Therefore, Proposition 2.5 gives

δk−2(f3) <
4δk−1(f2)
1− |α2|

<
42δ

(1− |α1|)(1− |α2|)
.

Since for every j = 1, . . . , k , condition (2.20) implies :

4j−1δ

(1− |α1|) · · · (1− |αj−1|)
<

1− |αj |
8

,

Proposition 2.5 gives

δk−j(fj+1) <
4δk−j+1(fj)

1− |αj |
<

4jδ

(1− |α1|) · · · (1− |αj |)
.

Finally, for j = k , we get

δ0(g) <
4kδ

(1− |α1|) · · · (1− |αk|)
≤ 4kδ

(1− |αk|)k
. (2.21)

Taking (2.20) into account once again gives :

δ0(g) < δ1/(k+1) ,

and by (2.19),
1− |αk+1| < δ2/(k+1) < 4δ1/(k+1) ,

and the Theorem is proved.

From these estimates one can easily deduce an asymptotic behavior of |αk+1| when d is close to 1 :

Corollary 2.7. – When d → 1− , the k + 1 -st zero of f satisfies :

1− |αk+1| ∼ 4
(
2(1− d)

)1/2(k+1)
.

We have investigated, so far, the structure of the set {f = 0} . We now turn to the set {|f | < ε} .

III. The measure of the set where an H2 function is small .

Our starting point is a theorem of H. Cartan (see B. Levin [7]), which provides an estimate from below
for the modulus of a polynomial, outside a subset of known shape and measure :

Theorem. – Given any H > 0 and complex numbers z1 , z2 , . . . , zn , there is a system of circles in the

complex plane, with the sum of radii equal to 2H , such that for each point z lying outside these circles, one

has the inequality :

|z − z1| · |z − z2| · · · |z − zn| >

(
H

e

)n

. (3.1)

In other words, if M is the surface measure in the plane, for a polynomial

P (z) = (z − z1) · · · (z − zn),

one has :

M{z ; |P (z)| ≤
(

H

e

)n

} ≤ 4πH2 .

This means also that for any δ > 0,

M{z ; |P (z)| ≤ δ} ≤ 4πe2δ2/n . (3.2)

This estimate depends on the degree of the polynomial. We are going to extend it to the frame of H2

functions with concentration at low degree :
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Theorem 3.1. – Let f be a function in the Hardy space H2 , satisfying

‖f‖2 = 1 ; (
∑
j≤k

|aj |2)1/2 ≥ d. (3.3)

Let M be the surface measure in the plane, and D̄ the closed unit disk. Then, for any δ > 0 ,

M{z ∈ D̄ ; |f(z)| ≤ δ} ≤ C(d, k)
log(1/δ)

,

where

C(d, k) = π log
d2

33(k+2)
.

Proof. – It does not follow at all Cartan’s original proof, which was algebraic and highly dependent of the
degree. Here instead, we use Jensen’s inequality, as we already did in [1], [2]. We start with estimates which
improve slightly the ones we obtained in these papers, though they basically follow the same techniques.

Lemma 3.2. – For any r , 0 < r ≤ 1 , for any function f satisfying (3.3), one has :

∫ 2π

0

log |f(reiθ)| dθ

2π
≥ max

0<ρ<1

1 + ρ

1− ρ

(
log(drkρk)− 1

2
1 + ρ

1− ρ

)
.

Proof of Lemma 3.2. – Fix r , 0 < r ≤ 1, and define h(z) = f(rz). This function is also in H2 . Fix also
ρ , 0 < ρ < 1. For any z0 , with |z0| = ρ , one has, by the classical Jensen’s inequality :

∫ 2π

0

log |h
(

eiθ + z0

1 + z̄0eiθ

)
| dθ

2π
≥ log |h(z0)| . (3.4)

Let A be the left-hand side of (3.4). A change of variable gives :

A =
∫ 2π

0

log |h(eiθ)| 1− ρ2

|1− z̄0eiθ|2
dθ

2π

≤ 1− ρ

1 + ρ

∫
log |h|≤0

log |h(eiθ)| dθ

2π
+

1 + ρ

1− ρ

∫
log |h|>0

log |h(eiθ)| dθ

2π
.

But ∫
log |h|>0

log |h(eiθ)| dθ

2π
≤ 1

2

∫
|h|2 dθ

2π
≤ 1

2

∫
|f |2 dθ

2π
=

1
2

.

So we get : ∫
log |h|≤0

log |h(eiθ)| dθ

2π
≥ 1 + ρ

1− ρ

(
A− 1

2
1 + ρ

1− ρ

)
,

and by (3.4) : ∫
log |h(eiθ)| dθ

2π
≥ 1 + ρ

1− ρ

(
log |h(z0)| −

1
2

1 + ρ

1− ρ

)
. (3.5)

Let’s write z0 = ρeit . We have :

h(z0) = f(rz0) = f(rρeit) =
∞∑

j=0

ajr
jρjeijt ,
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and so : (∫ 2π

0

|f(rρeit)|2 dt

2π

)1/2

=

( ∞∑
0

|aj |2r2jρ2j

)1/2

≥

(
k∑
0

|aj |2r2jρ2j

)1/2

≥ drkρk .

So we can find a z0 , |z0| = ρ , such that :

|h(z0)| = |f(rz0)| ≥ drkρk .

Coming back to (3.5), we find∫ 2π

0

log |f(reiθ)| dθ

2π
≥ max

0<ρ<1

1 + ρ

1− ρ

(
log(drkρk)− 1

2
1 + ρ

1− ρ

)
,

as we announced.

Taking ρ = 1/3, we find :

Corollary 3.3. – If f ∈ H2 has concentration d at degree k , for every r , 0 < r ≤ 1 ,∫ 2π

0

log |f(reiθ)| dθ

2π
≥ 2 log

drk

e3k
+ log ‖f‖2 .

If we assume f ∈ H∞ and ‖f‖∞ = 1, with ‖sk(f)‖2 ≥ d , the above arguments simplify, since
log |h| ≤ 0, and one gets :

Lemma 3.4. – Assume f ∈ H∞ , ‖f‖∞ ≤ 1 , ‖sk(f)‖2 ≥ d . Then, for every r , 0 < r ≤ 1 :∫ 2π

0

log |f(reiθ)| dθ

2π
≥ max

0<ρ<1

{
1 + ρ

1− ρ
log(drkρk)

}
.

This estimate will be used in § 4.

Lemma 3.5. – Assume that f ∈ H2 has concentration d at degree k . Then,∫ 1

0

∫ 2π

0

log |f(reiθ)| rdrdθ ≥ π log
d2

ek+132k
.

Proof of Lemma 3.5. – We deduce from Corollary 3.3 :∫ 1

0

∫ 2π

0

log |f(reiθ)| rdrdθ ≥ 4π

∫ 1

0

r log
(

d

e

(r

3

)k
)

dr ,

MACSYMA computes this last integral and gives the required lower bound.

We now turn to the proof of the Theorem. We put φ(x, y) = f(z), for z = x + iy ∈ D̄ . Then :∫ ∫
D̄

log |φ(x, y)| dxdy ≥ π log
d2

ek+132k
. (3.7)

Let’s split this integral into two parts : the part where |φ| ≤ δ and the part where |φ| > δ . We have :∫ ∫
|φ|>δ

log |φ(x, y)| dxdy ≤
∫ ∫

|φ|≥1

log |φ(x, y)| dxdy

≤ 1
2

∫ ∫
D̄

|φ(x, y)|2 dxdy .
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But

(
∫ ∫

D

|φ(x, y)|2 dxdy)1/2 =
(∫ 1

0

∫ 2π

0

|f(reiθ)|2 rdrdθ

)1/2

≤
(∫ 1

0

rdr

∫ 2π

0

|f(eiθ)|2 dθ

)1/2

≤
√

π .

This gives : ∫ ∫
|φ|>δ

log |φ(x, y)| dxdy ≤ π

2
. (3.8)

From (3.7) and (3.8) we now deduce :∫ ∫
|φ|≤δ

log |φ(x, y)| dxdy ≥ π log
d2

ek+132k
− π

2

≥ π log
d2

ek+3/232k

≥ π log
d2

33k+2
,

which gives : ∫ ∫
|φ|≤δ

log
1

|φ(x, y)|
dxdy ≤ π log

33k+2

d2
,

and finally : (
log

1
δ

)
M{|φ| ≤ δ} ≤ π log

33k+2

d2
,

which proves the Theorem.

Of course, outside the unit disk, the statement does not make sense since the function f is not defined
in general. But if we take a mere polynomial, the question may be asked, since Cartan’s theorem was valid
in the whole plane. Here, the result remains true, for a polynomial, inside a disk of given radius (with data
depending on the radius ; same proof as above), but an inequality such as :

M{z ∈ CI ; |P (z)| ≤ δ} ≤ εd,k(δ),

with εd,k(δ) → 0 when δ → 0, cannot be true. Indeed, take any polynomial P and a root z0 . There is a
small disk around z0 , of radius α , where |P (z)| < δ . Let’s consider Q(z) = P (z/n), for n ∈ NI . We have
|Q(z)| < δ in a disk centered at nz0 , with radius nα . Moreover, Q has concentration d at degree k , if P

had concentration d at degree k .

Finally, we observe that, in this paragraph, we do not get Cartan’s result in its full strength (beside
the exact values of the constants) : we control the measure of the set, but cannot say that it is contained
in a reunion of disks, with a control upon the sum of radii (for instance, a line of length l has measure 0,
but if we cover it by disks, the sum of radii will be at least l/2). This question will be solved in the next
paragraph.

A result of a similar nature, with much stronger assumptions, can be found in Levin [7], th. 11 p. 21 :

Theorem. – If f is holomorphic in the disk {|z| ≤ 2e} and satisfies |f(0)| = 1 , then, for every η ,

0 < η < 3e/2 , outside a reunion of disks with sum of radii < 4η , one has, for every z , |z| ≤ 1 ,

|f(z)| ≥ K−(2+log(3e/2η)) ,

where

K = max{|f(z)| ; |z| = 2e}.
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IV. The shape of the set where an H2 function is small .

In this section, we are going to extend Cartan’s result in its full strength, to H2 functions with concen-
tration at low degrees. Namely, we prove :

Theorem 4.1. – Let d , 0 < d ≤ 1 and k ∈ NI . For any function f in H2 , with concentration d at degree

k , the set {z ∈ D ; |f(z)| < ε ‖f‖2} can be covered by a countable union of disks Di , with radius ri ,

satisfying
∑

ri ≤ φd,k(ε) , with :

φd,k(ε) = C
log log 1/

√
ε

log 1/
√

ε
log

2k
√

k + 1
d

,

and C = 3 · 210 π2 .

In an earlier version of this paper, the conclusion was established only for the sets {z ∈ D(r) ; |f(z)| <
ε ‖f‖2} (which is much easier to obtain). We are greatly indebted to Tom Wolff to drawing our attention
to Carleson’s theorems 3.1 and 3.2, section VIII in Garnett [6], and explaining the connection with the
present situation. So the proof we present now is essentially T. Wolff’s adaptation of these theorems (valid
for the upper half-plane). We have also been informed by A. Ancona that a proof can be given using some
arguments from Potential Theory.

Proof. – Let f be an H2 function with concentration d at degree k and ‖f‖2 = 1. We write the canonical
factorization f = B · S · F .

First, we reduce the problem to an H∞ function. We write the outer part :

F (z) = exp
∫ 2π

0

eiθ + z

eiθ − z
log h(θ)

dθ

2π
,

and we define h1 = h if h ≥ 1, h1 = 1 otherwise, and h2 = 1 if h ≥ 1, h2 = h otherwise, so h = h1 · h2 . If
F1 and F2 are the corresponding outer functions, we get F = F1 · F2 .

Moreover, ∫
h2

1

dθ

2π
=
∫
{h1≤1}

h2
1

dθ

2π
+
∫
{h1>1}

h2
1

dθ

2π

= m{h1 ≤ 1}+
∫
{h>1}

h2 dθ

2π
≤ 2,

which shows that ‖F1‖2 ≤
√

2.
Since |F1(eiθ)| = h1(θ) a.e., we have |F1(eiθ)| ≥ 1 a.e., and the same way |F2(eiθ)| ≤ 1. If we set

f1 = B · S · F2 , we have ‖f1‖∞ ≤ 1, and

{|f(z)| < ε} ⊂ {|f1(z)| < ε}.

Finally, Proposition 1.1 gives

d ≤ ‖sk(f)‖2 ≤ ‖sk(f1)F1‖2 ≤ ‖sk(f1)‖∞‖F1‖2 ,

which gives

‖sk(f1)‖∞ ≥ d√
2

,

and
‖sk(f1)‖2 ≥ d√

2(k + 1)
. (4.1)
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So the problem reduces to an H∞ function, f1 , satisfying ‖f1‖∞ ≤ 1 and (4.1).
For the Blaschke factor B , Corollary 1.3 gives

‖sk(B)‖2 ≥ d√
k + 1

, (4.2)

and the same for the inner part B · S :

‖sk(B · S)‖2 ≥ d√
k + 1

(4.3)

and for F2 , we deduce from (4.1), using Proposition 1.1 :

‖sk(F2)‖2 ≥ d√
2(k + 1)

. (4.4)

The set {|f | < ε} is contained in the union

{|B · S| <
√

ε} ∪ {|F2| <
√

ε},

so we will prove separately Theorem 1.1 for B · S and for F2 . We start with B , and consider first the case
where it has concentration d at degree 0.

Theorem 4.2. – For any Blaschke product B(z) satisfying |B(0)| ≥ d , for every ε > 0 , the set {z ∈
D ; |B(z)| < ε} can be covered by a countable union of disks, with sum of radii ≤ φd(ε) , with

φd(ε) = c
log log 1/ε

log 1/ε
log 1/d ,

and c = 210 π2 .

Proof of Theorem 4.2. – We write

|B(z)| =
∞∏
1

|z − αj |
|1− ᾱjz|

.

We fix η > 0, and we define :

Eη = {z ∈ D ; |z − αj | > η (1− |αj |) ∀j}.

Then we have

Proposition 4.3. – If z ∈ Eη ,

log
1

|B(z)|
≤ Aη (1− |z|2)

∑
j

1− |αj |2

|1− ᾱjz|2
,

with

Aη =
1
2
(1 + log

3
η
).

Proof. – We first need a lemma.
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Lemma 4.4. – The condition |z − αj | ≥ η(1− |αj |) implies

|z − αj | ≥
η

3
|1− ᾱjz|.

Proof of Lemma 4.4. – We have

|1− ᾱjz| ≤ |1− ᾱjαj |+ |ᾱjαj − ᾱjz|
≤ 1− |αj |2 + |αj ||αj − z|

≤
(2
η

+ 1
)
|z − αj |,

from which the Lemma follows obviously.

Now, we observe that, if 0 < a2 ≤ t < 1,

− log t

1− t
≤ −2 log a

1− a2

≤ 1 + 2 log
1
a

and thus
− log t ≤ (1 + 2 log

1
a
)(1− t). (4.4)

Using this inequality, we deduce from Lemma 4.4 that, for z ∈ Eη ,

− log |B(z)|2 = −
∑

log
|z − αj |2

|1− ᾱjz|2

≤ (1 + 2 log
3
η
)
∑(

1− |z − αj |2

|1− ᾱjz|2
)
.

But

1− |z − αj |2

|1− ᾱjz|2
=

(1− |z|2)(1− |αj |2)
|1− ᾱjz|2

,

which gives the Proposition.

From this estimate, we see that no point z , with |z| ≤ 1/2 and |B(z)| < ε , can be in Eη , if Aη is not
too large, namely :

Aη ≤ 1
6

log 1/ε

log 1/d
. (4.5)

Indeed, assume |z| ≤ 1/2, |B(z)| < ε , and z ∈ Eη . Proposition 4.3 gives

log 1/ε ≤ Aη (1− |z|2)
∑

j

1− |αj |2

|1− ᾱjz|2
.

But |1− ᾱjz| ≥ 1− |z| , and
1− |z|2

(1− |z|)2
=

1 + |z|
1− |z|

≤ 3, so :

log 1/ε ≤ 3Aη

∑
1− |αj |2 ≤ 6Aη

∑
1− |αj |.

But, since |B(0)| ≥ d , we have : ∑
1− |αj | ≤ −

∑
log |αj | ≤ log 1/d , (4.6)

which proves our claim. The estimate (4.5) will be satisfied at the end. From now on, we go on investigating
Eη , keeping in mind |z| ≥ 1/2.
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We now consider a measure on the unit circle :

µ =
∑

j

(1− |αj |2)δαj/|αj | ,

where δw is the Dirac measure at the point w . We also define the function :

Pµ(z) =
∫
C

1− |z|2

|1− z̄ζ|2
dµ(ζ)

=
∫

Pr(θ − t)dµ(t) , if z = reiθ .

Then we have :

Proposition 4.5. – If z ∈ Eη ,

log
1

|B(z)|
≤ 4Aη Pµ(z).

Proof of Proposition 4.5. – From the definition of µ follows :

Pµ(z) = (1− |z|2)
∑

j

1− |αj |2

|1− z̄
αj

|αj | |
2

.

But
|1− z̄

αj

|αj |
| = |1− ᾱj

|αj |
z|

≤ |1− ᾱjz|+
∣∣ᾱjz − z

ᾱj

|αj |
∣∣

≤ |1− ᾱjz|+ |z|(1− |αj |)
≤ 2|1− ᾱjz|.

This gives

Pµ(z) ≥ 1
4
(1− |z|2)

∑
j

1− |αj |2

|1− ᾱjz|2
,

and the result follows from Proposition 4.3.

We now define a subset Γ0 of the unit disk, by the polar equation of its boundary :

– if |θ| ≤ π/3, |θ| = π
1− r

1 + r
,

– if |θ| > π/3, r = 1/2.

Let A = 1 and M = eiθ in the complex plane. Let l(AM) be the length of the arc AM . Let P be the
intersection of OM with ∂Γ0 , boundary of Γ0 .
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Lemma 4.6. – The circle centered at M , with radius l(AM) , contains the sector APM .

Proof. – Assume θ > 0. The length of the arc AM is θ . We first prove that the circle contains P . The
length of MP is 1− r .

– if θ ≤ π/3, 1− r = θ
1 + r

π
≤ 2θ/π ,

– if θ > π/3, 1− r = 1/2 < 2θ/π .
Assume first θ < π/3. Let M ′ be a point on the unit circle, between A and M , and P ′ the cor-

responding point on ∂Γ0 . The circle centered at M ′ is contained in the circle centered at M , since
MM ′ + θ′ < θ − θ′ + θ′ = θ . So P ′ belongs to the circle centered at M . This proves the Lemma
when θ < π/3.

If θ > π/3, the circle contains also the point A′ = 1/2, thus the segments AA′ and A′P , and so it
contains the curve, and the Lemma is proved.

For ε > 0, η > 0, we define

Yε,η = {z ∈ Eη ; |B(z)| < ε}.

For any x ∈ C , we define Γx as the set Γ0 after a rotation of angle arg(x). This set intersects C at the
point x only. We set :

Y ∗
ε,η = {x ∈ C ; Γx intersects Yε,η}.

This is an open set, so it is a countable union of open intervals Ik on the unit circle. Let l(Ik) be the length
of Ik (on the circle), and Mk be le middle of Ik (also on the circle). Then :

Lemma 4.7. – The reunion of the disks Dk centered at Mk and with radius l(Ik)/2 covers Yε,η .

Proof of Lemma 4.7. – Let I be any of the Ik , and let E , E′ be its endpoints, Γ, Γ′ the corresponding
sets. The curves ∂Γ, ∂Γ′ intersect at a point P . Let M ∈ C be the middle of EE′ ; it is on the segment
OM . By Lemma 4.6, the circle centered at M , with radius l(I)/2, contains the sector between Γ and Γ′ .
But by definition, the sets Γ, Γ′ do not intersect Yε,η , so Yε,η is contained in the union of these sectors.
This proves the Lemma.

We denote by r(Dk) the radius of the disk Dk . We have, by Lemma 4.7 :

∑
k

r(Dk) =
1
2

∑
l(Ik) = π m(Y ∗

ε,η), (4.5)

where m is, as before, the normalized Lebesgue measure on C : that is, m(C) = 1.
We now define, for x ∈ C ,

P ∗
µ(x) = sup

Γx3z
Pµ(z),

which is Hardy-Littlewood’s maximal function associated to the cones Γx (see Garnett [6], p. 28). We also
put

Nµ(x) = sup
I3x

µ(I)
m(I)

,

the maximal function associated to the measure µ . Then :

Lemma 4.8. – For every x ∈ C , P ∗
µ(x) ≤ 2Nµ(x) .

Proof of Lemma 4.8. – We follow Garnett, th. 4.2, chap. I (his proof is given for the upper half-plane, and
the exact value of the constant – which we need here– is not specified).
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It’s enough to prove the result for x = 0, that is

sup
z∈Γ0

Pµ(z) ≤ 2 sup
I30

1
m(I)

µ(I),

with

µ(I) =
∑
αi
|αi|

∈I

1− |αi|2 .

First we take z real, z = r . Then Pr(t) is an even function of t , decreasing for t ≥ 0. So we can find an
increasing sequence of positive functions, hn(t), each of them being a sum of characteristic functions (1E is
the function which takes the value 1 on the set E , 0 outside) :

hn =
∑

l

a
(n)
l 1Jl

, a
(n)
l ≥ 0 , Jl = [−xl, xl],

with hn(t) ≤ Pr(t), for every t ; the sequence hn(t) is increasing and limn hn(t) = Pr(t). So

∫ 2π

0

hn(t)
dt

2π
=
∑

l

a
(n)
l m(Jl) ≤ 1.

For any n , ∫
hn(t)dµ(t) =

∑
l

a
(n)
l

∫
1Jl

dµ(t)

=
∑

l

a
(n)
l

∑
αi
|αi|

∈Jl

1− |αi|2

=
∑

l

a
(n)
l m(Jl)

1
m(Jl)

∑
αi
|αi|

∈Jl

1− |αi|2

≤ Nµ(0),

and
∫

Pr(t)dµ(t) ≤ Nµ(0) follows if we let n →∞ .
Let now z = reiθ ∈ Γ0 , with r ≥ 1/2, and 0 ≤ θ < π . For s > 0, we define :

Ψ(s) = sup{Pr(θ − t) ; |t| > s}.

So Ψ(s) = Pr(θ − s) if s ≥ θ , and Ψ(s) = Pr(0) if s ≤ θ . We also put Ψ(−s) = Ψ(s). We have a positive,
even function, decreasing for s ≥ 0, which majorizes Pr(θ − t). Moreover :∫ π

−π

Ψ(s)
ds

2π
≤ θ

π
Pr(0) + 1 =

θ

π

1 + r

1− r
+ 1.

The definition of Γ0 gives
θ

π

1 + r

1− r
= 1, and so

∫ π

−π

Ψ(s)
ds

2π
≤ 2.

Applying the above reasoning to Ψ(s) instead of Pr(s), we obtain the Lemma.
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If x ∈ Y ∗
ε,η , there exists a point z ∈ Eη , with Γx 3 z , and |B(z)| < ε . By Proposition 4.5,

P ∗
µ(x) ≥ 1

4Aη
log

1
ε

,

which implies

Nµ(x) ≥ 1
8Aη

log
1
ε

.

Set aη = 1/(8Aη). We have

Y ∗
ε,η ⊂ {x ∈ C ; Nµ(x) ≥ aη log

1
ε
},

and thus
m(Y ∗

ε,η) ≤ m
(
{x ∈ C ; Nµ(x) ≥ aη log

1
ε
}
)
.

By the weak-type inequalities for the maximal function (Garnett, chap. I, th. 4.3 and th. 5.1) :

m
(
{x ∈ C ; Nµ(x) ≥ aη log

1
ε
}
)
≤ 2

aη log 1/ε

∫
dµ

≤ 2
aη log 1/ε

∑
1− |αj |2.

But since |B(0)| ≥ d , we have

− log d ≥ −
∑

log |αj | ≥
∑

1− |αj |,

which implies ∑
1− |αj |2 ≤ 2 log 1/d.

Finally we obtain : ∑
r(Dk) ≤ 32π Aη

log 1/d

log 1/ε
. (4.6)

This is the required estimate for the part of {|B(z)| < ε} which is in Eη . For the part which is not in Eη ,
we use trivial estimates. We let

∆j = {z ∈ D ; |z − αj | ≤ η (1− |αj |)},

and
Rj = {z ∈ ∆j ; |B(z)| < ε}.

Then ∑
r(∆j) ≤ η

∑
1− |αj | ≤ η log 1/d.

We now prove Theorem 4.2. With c = 32π , we see that, for every η > 0, the set |B(z)| < δ can be covered
by the union of the disks Dk and the disks ∆j , with∑

r(Dk) +
∑

r(∆j) ≤ c (
1
2

+ log
3
η
)
log 1/d

log 1/ε
+ η log 1/d .

Set
f(η) = c (

1
2

+ log
3
η
)

1
log 1/ε

+ η .

It takes its minimum at η = c/(log 1/ε), and using this value for η , we find∑
r(Dk) +

∑
r(∆j) ≤ c2 log log 1/ε

log 1/ε
log 1/d ,

and we observe that if this number is ≤ 1, condition (4.5) will hold.
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We now prove Theorem 4.2 for the Blaschke term, when the concentration is at degree k (and not only
at degree 0). This will be done by means of a Möbius transformation. For w ∈ D , z0 ∈ D , we set

f̃(w) = f

(
w − z0

1− z̄0w

)
.

Lemma 4.9. – If f ∈ H∞ has concentration d at degree k , for every R , 0 < R < 1 , we can find z0 , with

|z0| = R , such that the function f̃ has concentration

d′ = dRk

at degree 0.

Proof of Lemma 4.9. – We assume ‖f‖∞ = 1, so ‖f̃‖∞ = 1. We have, if f =
∑

ajz
j ,

f̃(w) =
∑

aj

( w − z0

1− z̄0w

)j
,

so, if we set −z0 = Reiθ ,
f̃(0) =

∑
ajR

jeijθ .

But (∫ 2π

0

|
∞∑
0

ajR
jeijθ|2 dθ

2π

)1/2

=

( ∞∑
0

|aj |2R2j

)1/2

≥

(
k∑
0

|aj |2R2j

)1/2

≥ dRk.

So there is a θ such that

|
∞∑
0

ajR
jeijθ| ≥ dRk,

which proves our claim (a similar argument was already used in the proof of Lemma 3.2, in the H2 context).

If f is a Blaschke product B with zeros αi , the function f̃ will also be a Blaschke product B′ , with
zeros α′i . By Theorem 4.2, we can cover the set |B′(w)| < ε by disks with centers wi . Take z0 , with
|z0| = 1/2, given by Lemma 4.9, and define zi by

wi =
zi − z0

1− z̄0zi
.

Then the disk {|w − wi| < ri} is also the set∣∣∣∣ z − z0

1− z̄0z
− zi − z0

1− z̄0zi

∣∣∣∣ < ri . (4.7)

But
(z − z0)(1− z̄0zi)− (zi − z0)(1− z̄0z) = (1− |z0|2)(z − zi),

and since
|1− z̄0z||1− z̄0zi| ≤ (1 + |z0|)2,

the set (4.7) is contained in the disk

|z − zi| ≤
1 + |z0|
1− |z0|

ri = 3ri ,

and we obtain :
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Theorem 4.10. – Let B be a Blaschke product with concentration d at degree k . For every ε > 0 , the

set {z ∈ D ; |B(z)| < ε} can be covered by a countable union of disks, with sum of radii ≤ φd,k(ε) , with

φd,k(ε) = 3 · 210π2 log log 1/ε

log 1/ε
log 2k/d .

Since Blaschke products are uniformly dense in the set of inner functions (see for instance Garnett [6],
Corollary 6.5, p. 80), th. 4.10 holds with no change for any inner function.

We now turn to the study of the outer functions. It uses the same ingredients, but is much simpler, so
the proofs will be left to the reader.

Proposition 4.11. – Let F be an outer function, with ‖F‖∞ ≤ 1 and |F (0)| ≥ d . Then, for every ε > 0 ,

the set {z ∈ D ; |F (z)| < ε} can be covered by a reunion of disks, with sum of radii φ′d(ε) ,

φ′d(ε) = c
log 1/d

log 1/ε
,

with c = 4π .

Proof. – We write

F (z) = exp
∫ π

−π

eiθ + z

eiθ − z
u(θ)

dθ

2π
,

and u(θ) = log h(θ), h(θ) = |F (eiθ)| a.e.
Set v = −u . Then

v ≥ 0 ,

∫
v(θ)

dθ

2π
≤ log 1/d . (4.8)

For every ε > 0, we define Yε = {z ∈ D ; |F (z)| < ε} . Then

Yε = {z ∈ D ;
∣∣ log |F (z)|

∣∣ > log 1/ε}.

Set
Y ∗

ε = {x ∈ C ; Γx intersects Yε},

where Γx is defined as above. Then, as in Lemma 4.7, Yε is covered by a reunion of disks Dk , with∑
r(Dk) ≤ π m(Y ∗

ε ).
Set now

G∗(x) = sup
z∈Γx

∣∣ log |F (z)|
∣∣,

then Y ∗
ε ⊂ {x ; G∗(x) > log 1/ε} .

Let v∗ be the maximal function associated with v :

v∗(x) = sup
I3x

1
m(I)

∫
I

∣∣log |F (eiθ)|
∣∣ dθ

2π
.

Then, as in Lemma 4.8, for every x ∈ C ,

G∗(x) ≤ 2v∗(x).

So
Y ∗

ε ⊂ {x ; v∗(x) >
1
2

log 1/ε}.

By the weak-L1 inequalities for the maximal function v∗ :

m{x ; v∗(x) >
1
2

log 1/ε} ≤ 4
log 1/ε

∫
v(t)

dt

2π

≤ 4
log 1/d

log 1/ε
, by (4.8),

and the Proposition is proved.
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Remark. – One can also prove this result using an analogue of Th. 3.1, chap. VIII in Garnett, but the
present approach gives a better estimate.

If we now consider outer functions with concentration d at degree k , using Lemma 4.9, we get :

Theorem 4.12. – Let F be an outer function with ‖F‖∞ ≤ 1 and |sk(F )|2 ≥ d . Then, for every ε > 0 ,

the set {z ∈ D ; |F (z)| < ε} can be covered by a reunion of disks, with sum of radii φ′d,k(ε) ,

φ′d,k(ε) = 12π
log(2k/d)
log 1/ε

.

Let’s now prove Theorem 4.1. Assume that f has concentration d at degree k . So the Blaschke factor
satisfies |sk(B)|2 ≥ d/

√
k + 1 by (4.2), and by (4.9), the set {|B(z)| <

√
ε} can be covered by disks, with

∑
ri ≤ 3 · 210π2 log log 1/

√
ε

log 1/
√

ε
log

2k
√

k + 1
d

.

The same is true for the inner factor.
The outer factor F2 satisfies ‖sk(F2)‖2 ≥ d/

√
2(k + 1) by (4.3), and by Theorem 4.12, the set {|F2(z)| <√

ε} can be covered by disks, with

∑
ri ≤ 12π

1
log 1/

√
ε

log
2k
√

2(k + 1)
d

.

The set {|f(z)| < ε} is contained in the union of both sets, and the result follows.

The estimate we have obtained is numerically worse than that of § 3. Besides the numerical constant in
th. 4.1, which is too big, the order of magnitude is close to best possible. Indeed, we now show that there

are examples for which
∑

ri ∼
1

log 1/ε
.

Let’s take a sequence of (αn) which are real, positive, strictly increasing to 1. We consider

B(z) =
∞∏
1

αn − z

1− αnz
.

Then we have |B(z)| < ε if and only if

∑
log αn +

∑
log
∣∣∣∣1− z

αn

1− α2
n

1− αnz

∣∣∣∣ < log ε.

So the set

Aε = {z ;
∑

log
∣∣∣∣1− z

αn

1− α2
n

1− αnz

∣∣∣∣ < log ε}

is contained in {|B(z)| < ε} .
We take z ∈ RI . Then z ∈ Aε as soon as∑ z

αn

1− α2
n

1− αnz
> log 1/ε . (4.9)

If αn ≤ z ,
1− α2

n

1− αnz
≥ 1, and so, for every z ∈ [0, 1],

∑ z

αn

1− α2
n

1− αnz
≥ card {αn ; αn ≤ z}.
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Let f(x) be a positive, decreasing, integrable function on [1,+∞[ . Set αn = 1 − f(n). The Blaschke
product B will have concentration 1/2 at degree 0 if∫ ∞

1

f(t)dt < log 2. (4.10)

Then
card {αn ; αn ≤ z} = f−1(1− z),

and (4.9) will hold if
f−1(1− z) ≥ log 1/ε,

or
z ≥ 1− f(log 1/ε).

So |B(z)| < ε on the segment [1− f(log 1/ε), 1] which has length f(log 1/ε).

For the function f , one can choose f(x) = 1/xα (α > 1), or
1

x(log x)α
, with proper truncation to

ensure (4.10), that is f(x) = f(x0) if x ≤ x0 . This way, one gets examples in which the length of the

segment where |B(z)| < ε is of the order
1

(log 1/ε)α
, or

1
log 1/ε(log 1/ε)α

.

To cover such a segment by a reunion of disks requires of course that the sum of radii should be of the
same order of magnitude.
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