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0. Introduction.

Our algorithm will rely on an an old principle, due to Walsh ([3], 1922), which has not
been employed as much as it should be. Indeed, “Walsh contraction principle”, as we call
it here, can be successfully employed in order to derive, more simply and with quantitative
improvements, all known results about the zeros of a polynomial and those of its derivative,
such as Lucas’ Theorem, Grace’s Theorem, Laguerre’s Theorem and many others. These
consequences will be presented elsewhere. Here, we concentrate on the search of the zeros.

The algorithm itself is, at this stage, purely theoretical: it works “in principle”. It
has been implemented, but has not been tested against other algorithms. A lot of work
remains to be done, in a more numerical context, trying to find the situations in which a
particular algorithm (including this one) does not work well, or, on the contrary, behaves
satisfactorily. We thought it necessary to present first the theory.

In a first section, before we describe the algorithm, we give the statement and the
proof of Walsh’s principle [3].

1. Walsh’s contraction principle.

Recall that a (closed) circular region is either a (closed) disk, or a (closed) half-plane,
or the (closed) exterior of a disk. Any of the three can be transformed into one of the two

others by a suitable map z → az + b

cz + d
, ad− bc 6= 0.

These maps were called “linear” by Walsh ; they are now called “bilinear” or “ho-
mographic”. They are indeed linear if one uses homogeneous coordinates: if z = z1/z2 ,
then the new coordinates are Z1 = az1 + bz2 , Z2 = cz1 + dz2 . Such homogeneous co-
ordinates are useful, in order to pass from a one variable polynomial P (z) =

∑n
0 ajz

j

to the associated two-variable homogeneous polynomial P (z1, z2) =
∑n

0 ajz
j
1z

n−j
2 . The

correspondence between both polynomials and between both systems of variables will be
used several times in the sequel.

Theorem 1 (J.L. Walsh). – Let ϕ(z1, . . . , zn) be a polynomial in n variables, with the

following properties :

– ϕ has degree 1 with respect to each variable,

– ϕ is symmetric with respect to the variables (that is, ϕ in invariant under permu-

tation of the variables).

Let D be a circular region and assume that in D there are points (z1, . . . , zn) such

that

ϕ(z1, . . . , zn) = 0.

Then there is in D a point z such that

ϕ(z, . . . , z) = 0.
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Proof. The proof we give follows the original one, with only slight improvements, but
a more modern terminology. We may restrict ourselves to the case when D is a disk, for
any circular region can be transformed into a disk by a suitable homographic map, which
will not modify the properties of ϕ .

The key to the proof is the following proposition :

Proposition 2. – Let a , b , c be three complex numbers. We consider the complex

numbers z = (z1, z2) (in homogeneous coordinates) solutions of the equation

az2
1 + 2bz1z2 + cz2

2 = 0. (1)

Let z′ = (z′1, z
′
2) , z′′ = (z′′1 , z′′2 ) be the two solutions of (1). Let also u = (u1, u2) ,

v = (v1, v2) be two complex numbers, satisfying

au1v1 + b(u1v2 + u2v1) + cu2v2 = 0. (2)

Then the four points z′ , u , z′′ , v are on the same circle (maybe degenerate) and in this

order.

Proof of Proposition 2.

– General case : b2 − ac 6= 0. We define a linear transformation of homogeneous
coordinates, by

Z1 = αz1 + βz2, Z2 = γz1 + δz2.

We will see that, by a suitable choice of α , β , γ , δ , αδ − βγ 6= 0, (1) becomes Z2
1 = Z2

2

and (2) becomes U1V1 = U2V2 .

Indeed, Z2
1 = Z2

2 is equivalent to

(αz1 + βz2)2 = (γz1 + δz2)2,

that is
(α2 − γ2)z2

1 + 2(αβ − γδ)z1z2 + (β2 − δ2)z2
2 = 0,

and U1V1 = U2V2 is equivalent to

(αu1 + βu2)(αv1 + βv2) = (γu1 + δu2)(γv1 + δv2),

or
(α2 − γ2)u1v1 + (αβ − γδ)(u1v2 + u2v1) + (β2 − δ2)u2v2 = 0.

So we take α , β , γ , δ so that

α2 − γ2 = a, αβ − γδ = b, β2 − δ2 = c,

and such a choice of α , β , γ , δ with αδ − βγ 6= 0 always exists, no matter what are the
values of a , b , c , when b2 − ac 6= 0.
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We now consider the complex numbers z′ , z′′ , solutions of

z2
1 = z2

2 , (3)

and two complex numbers u , v satisfying

u1v1 = u2v2, (4)

and we will show that z′ , u , z′′ , v are on the same circle, in this order.

Let z1 = ξ1 + iη1 , z2 = ξ2 + iη2 , where ξ1 , η1 , ξ2 , η2 ∈ RI .
A circle passing through z = 1 and z = −1 is of the form

|z − iλ|2 = 1 + λ2 (λ ∈ RI ),

or, in homogeneous coordinates :

|z1 − iλz2|2 = (1 + λ2) |z2|2.

In homogeneous real coordinates, this gives :

(ξ1 + λη2)2 + (η1 − λξ2)2 = ξ2
2 + η2

2 + λ2 ξ2
2 + λ2 η2

2 ,

or

ξ2
1 + η2

1 + 2λ(ξ1η2 − η1ξ2) = ξ2
2 + η2

2 . (5)

This equation in invariant if we exchange the indexes 1 and 2. Therefore, if it is satisfied
by u , it is also satisfied by v , if uv = 1. The order of points is clear, since if uv = 1,
arg u = −arg v .

– Now, let’s look at the special cases where b2 = ac .
First, if b 6= 0 (so a 6= 0 and c 6= 0), (1) becomes az1 + bz2 = 0, and (2) becomes

(au1 + bu2)(av1 + bv2) = 0. So z′ = z′′ and either u or v (or both) cöıncide with z′ and
z′′ .

If b = 0, and a = 0 but c 6= 0, (1) becomes z2 = 0 and (2) becomes u2v2 = 0, so
z′ = z′′ = ∞ and either u or v is ∞ .

If b = 0, a 6= 0, c = 0, (1) is z = 0, (2) is u1v1 = 0, so z′ = z′′ = 0 and u or v is 0.

In all these cases, the line passing through u = z′ = z′′ and v (or by v = z′ = z′′ and
u) meets our request.
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Lemma 3. – Let z′ , z′′ , u , v be as in the assumptions of Proposition 2. Any circular

region containing both u and v must contain either z′ or z′′ .

Proof. This is obvious in the special cases. In the general case, by the previous
transformation, we reduce ourselves to the problem: Any closed disk containing both z

and 1/z must contain either 1 or −1. But since −1, z , 1, 1/z are on the same circle, in
this order, this is obvious.

For u , v , u 6= v , satisfying (2), we have seen that there is a well-defined circle, passing
through the four points u , v and the two solutions of (1). If u moves on this circle in one
direction, v moves in the other (still keeping (2) satisfied) and both points meet either at
z′ or at z′′ .

This circle, along which both u , v can move, will be called their “circle of indifference”
(it may be degenerate).

We now prove Walsh’s theorem. Let D be a circular region (it is enough to consider
a closed disk) and z1, . . . , zn ∈ D , with ϕ(z1, . . . , zn) = 0. Let D0 ⊂ D be the smallest
closed disk for which there exist points z′1 . . . , z′n ∈ D0 , with ϕ(z′1, . . . , z

′
n) = 0. We are

going to show that D0 is reduced to a single point.
We assume that D0 has non-empty interior, and we will reach a contradiction.
Let C0 be the circle, boundary of D0 . We consider several cases :

1) If one of the z′i , say z′1 , is not on C0 , the indifference circle of the pair (z′1, z
′
2)

cannot be C0 . We consider all pairs (z′1, z
′
i) for which the second point z′i is on C0 (this

must happen for at least one point, otherwise D0 would not be minimal). Say for instance
that z′2 ∈ C0 . Then we can move both z′1 and z′2 on their indifference circle, so that z′2 is
now in D0

0 (the interior of D0 ) and z′1 remains inside this interior (this is possible because
the indifference circle of the pair is precisely not C0 ). We proceed the same way with the
new z′1 and z′3 (if z′3 ∈ C0 ) ; we omit the pairs (z′1, z

′
i) for which z′i ∈ D0

0 . When we
finish, all points are in the interior D0

0 , and D0 was not minimal.

2) We assume now that all points z′i , are on C0 . If for some pair, say (z′1, z
′
2), the

indifference circle is not C0 , then both points can be moved on this indifference circle, so
as to get inside D0

0 , and we are back to the situation of 1). So we can restrict ourselves,
now, to the case where all points are on C0 , and moreover all pairs have C0 as indifference
circle (at this stage of the construction, or at later stages).

Let now L0 be the smallest closed arc (in length) on C0 , containing all points
z′1, . . . , z

′
n (L0 is simply the complement of the largest open arc between two consecu-

tive points). Let A , B ∈ C0 be the endpoints of L0 . Of course, some of the points z′i are
in A (say z′1 , z′2 , . . . ), some are in B (say z′n , z′n−1 , . . . ). We take these points two by
two : z′1 with z′n to start with, and move them inside L0 . This is possible, since C0 is
precisely the indifference circle of (z′1, z

′
n). When we are done with this pair, we pass to
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the next one, (z′2 , z′n−1 ), and so on. When we finish, at least one of the points A or B

will be free from all z′i , and we see that L0 was not minimal (see fig. 2). This contradiction
finishes the proof.

As we just saw, the entire proof relies on a manipulation of pairs, playing with points
two by two, and this is why the induction procedure is rather complicated.

So a natural question is : can’t we take the n points at once, and “shrink” them, still
staying inside the given disk D ? The answer is that such a manipulation is impossible in
general. There are cases where manipulating three points at the same time obliges us to
leave D . Indeed consider

ϕ(z1, z2, z3) = 8 z1z2z3 − 3(z1z2 + z2z3 + z3z1) + 2(z1 + z2 + z3)− 2.

The equation ϕ = 0 is satisfied for z1 = z2 = 0, z3 = 1.
Take now z1 = z2 = x , z3 = y , and let D be the disk with diameter [0, 1]. Then no

manipulation of x or of y , satisfying ϕ(x, x, y) = 0, can leave them both in D . Indeed,

∣∣y − 1
2

∣∣ =
1
2

∣∣x + 1
∣∣2

∣∣∣∣1−
5x3

(x + 1)2
+

x3ε(x)
(x + 1)2

∣∣∣∣, ε → 0, x → 0,

so to decrease |y − 1
2 | means to decrease |x + 1| . But one cannot decrease at the same

time |x− 1
2 | and |x + 1| , starting at x = 0.

The construction of this example will become clear when we study the algorithm itself.

2. Searching for the solutions of polynomial equations : The theory.

We start with an n -degree polynomial in one variable, with complex coefficients

P (z) = zn + an−1z
n−1 + · · ·+ akzk + · · ·+ a0, (1)

and we want to solve the equation P (z) = 0.

First, from P (z), we construct a polynomial P (x1, . . . , xn) in n variables, symmetric,
and of degree 1 with respect to each variable. Moreover, P (z, . . . , z) = P (z). This
polynomial is defined by

P (x1, . . . , xn) =

x1 · · ·xn +
an−1

n

∑

i1<...<in−1

xi1 · · ·xin−1 + · · ·+ ak(
n
k

)
∑

i1<...<ik

xi1 · · ·xik
+ · · ·+ a0

and Walsh’s principle tells us that in any disk containing a n -tuple (x1, . . . , xn) satisfying

P (x1, . . . , xn) = 0 (2)

there is a z satisfying (1), that is a solution of the polynomial equation.
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We will take the first n− 1 variables at the same place, say z1 = · · · = zn−1 = x , and
the last one, say zn = y , will be deduced from (2). This way, the dependence in y will be
linear, and we will obtain what we call a “linear command”. With this choice of points,
(2) becomes :

xn−1 y +
an−1

n

((
n− 1
n− 1

)
xn−1 +

(
n− 1
n− 2

)
xn−2 y

)
+ · · ·+

ak(
n
k

)
((

n− 1
k

)
xk +

(
n− 1
k − 1

)
xk−1 y

)
+ · · ·+ a0 = 0,

or

xn−1 y+
an−1

n

(
xn−1+(n−1)xn−2 y

)
+· · ·+ ak

n

(
(n−k)xk+kxk−1 y

)
+· · ·+a0 = 0, (3)

that is ( n∑

k=0

kakxk−1

)
y +

n∑
0

(n− k)akxk = 0, (4)

( n∑

k=0

kakxk−1

)
y = −n

n∑
0

akxk +
n∑
0

kakxk,

which can be written
nP (x) + (y − x)P ′(x) = 0 (5)

and means that
P1(y, x) = 0,

where P1(y, x) is the polar derivative of P at the point y (recall that this polar derivative
is defined by

P1(y, x) = nP (x) + (y − x)P ′(x),

see Marden [2, p. 49] and Beauzamy–Dégot [1]).
If P ′(x) 6= 0, we obtain the equation

y = x− n
P (x)
P ′(x)

. (6)

Remark. Once again, equations (4), (5), (6) are perhaps better understood if we use the
homogeneous two-variable polynomial associated with P . Indeed, let

P (x1, x2) = xn
1 + an−1 xn−1

1 x2 + · · ·+ ak xk
1xn−k

2 + · · ·+ a0x
n
2 .

Then, let x = x1/x2 , y = y1/y2 be homogeneous coordinates. We obtain

y1
∂P

∂x1
(x1, x2) + y2

∂P

∂x2
(x1, x2) = 0, (7)

which is another expression of the polar derivative (see [1]).
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We obtain easily a preliminary information on the location of the zeros of P :

Proposition 4. – Let x be any point such that P ′(x) 6= 0 , and let y = x−nP (x)/P ′(x) .
Then the closed disk of diameter [x, y] contains at least one zero of P .

Proof: This is a just a consequence of Walsh’s principle.

Of course, if the initial point x satisfies P ′(x) = 0, we change it for another one
(recall that the zeros of P ′ are called “critical points” of P by Walsh [3]).

We now aim at decreasing the distance |x− y| , in order to, eventually, satisfy x = y .
For this, we replace x by x + dx , y by y + dy . Equation (6) gives, by differentiation :

dy =
(

1− n
P ′2 − PP ′′

P ′2
(x)

)
dx, (8)

so we see that the increment dy , applied to y , depends linearly on the command dx (thus
justifying our title).

We may meet two situations : either P ′2(x)−P (x)P ′′(x) 6= 0 (then x will be called a
regular point), or P ′2(x)−P (x)P ′′(x) = 0 (then x is a singular point, or as we will prefer
later, a point of multiple choices). Note that P ′2−PP ′′ is a polynomial of degree 2n− 2,
so there are 2n− 2 singular points in the plane.

a) If we are at a regular point, P ′2(x)− P (x)P ′′(x) 6= 0, and

(y + dy)− (x + dx) = y − x− n
P ′2(x)− P (x)P ′′(x)

P ′2(x)
dx.

We write

F (x) =
P (x)
P ′(x)

,

F ′(x) =
P ′2(x)− P (x)P ′′(x)

P ′2(x)
,

and we let θ = Arg F ′(x), θ1 = Arg (y − x). We will choose the increment dx in such a
way that

|y − x− n F ′(x) dx| < |y − x|. (9)

This is the case if y− x and nF ′(x)dx are on the same line, in the same direction, that is

θ1 = θ + Arg (dx),

or
Arg (dx) = θ1 − θ. (10)
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Then (9) holds as soon as |dx| is small enough ; a precise value can be derived from Taylor
formula, as follows.

With x′ = x + dx , and the argument ψ of dx fixed as explained earlier, we have :

F (x′) = − 1
n

(y − x) + (x′ − x)F ′(x) +
(x′ − x)2

2
F ′′(c)

for some c on the segment [x, x′] .
Therefore, if dx = δ eiψ ,

|F (x′)| ≤ | − 1
n

(y − x) + (x′ − x)F ′(x)|+ δ2

2
|F ′′(c)|

and with Mδ = sup{|F ′′(x + η)| ; |η| ≤ δ} ,

|F (x′)| ≤ |y − x|
n

− δ|F ′(x)|+ δ2

2
Mδ

and this is smaller than |y − x|/n as soon as

δMδ ≤ 2|F ′(x)|.

A precise bound depends on Mδ . In practice, we will take

|dx| =
|y − x|

n|F ′(x)| . (11)

b) If we are at a singular point, the first derivative of F is zero. This means that, in
the first order of approximation, |y − x| does not change, no matter in which direction x

moves.

Let’s first consider an example : P (z) = z2 + 1, P ′(z) = 2z , F (x) =
x2 + 1

2x
, and

F ′ =
x2 − 1
2x2

.

So the point x = 1, giving y = −1 (since xy = −1), is a singular point, or more
exactly, a point of multiple choices.

You may choose to move upwards (in order to catch z1 ) and y will move accordingly,
or downwards, and y will do the same: If x = eiα , y = e−iα .

It should be understood on this example that singular points are not bad points.
There are places at which one has to make a choice ; they are, in some sense, boundaries
between basins of attraction associated with the zeros. The easiest way to get out of the
ambiguity would be to make a small move at random, in any direction, but there are better
ways, as we will now see.

8



Lemma 5. – A point x such that

F ′(x) = F ′′(x) = · · · = F (k)(x) = 0

satisfies
P ′(x)
P (x)

=
P ′′(x)
P ′(x)

= · · · =
P (k+1)(x)
P (k)(x)

. (12)

Proof of Lemma 5. If, at the point x , F is “flat at the order k”, that is satisfies
F ′ = · · · = F (k) = 0, so is 1/F = P ′/P . For k = 1, we get :

(P ′/P )′ =
P ′′

P
− (

P ′

P
)2 =

P ′

P
(
P ′′

P ′
− P ′

P
), (13)

and since we are at a point where P ′(x) 6= 0, (12) follows. Now, in (13), all terms are
sums or products of terms of the form f ′

f , and this will be preserved under derivation.

When computing F (k) , we get only one term of the form
P (k+1)

P (k)
− P (k)

P (k−1)
. If we assume

(12) up to the order k − 1, all other terms disappear, and so this one must be zero. This
proves the lemma.

So, since we are at a point where F ′(x) 6= 0, we must have k < n , and one of the
derivatives F ′(x), . . . , Fn−1(x) must be 6= 0.

Say for instance that F ′′(x) 6= 0. Then, from

y = x− n F (x),

we deduce that, for the new positions x + dx , y + dy :

(y + dy)− (x + dx) ∼ y − x− n
(dx)2

2
F ′′(x) (12)

and we must take the argument of dx in such a way that

Arg (y − x) = Arg(dx)2 + Arg F ′′(x),

that is

Arg (dx) =
1
2

(
θ1 −Arg F ′′(x)

)
(13)

and |dx| small enough so that (12) holds. In practice :

|dx| =
(

2|y − n|
n|F ′′(x)|

)1/2

.

A more geometrical method can be taken. If F ′(x) = 0 but F ′′(x) 6= 0, F is an
analytic function which, locally, multiplies the angles by a factor 2 (if F ′ 6= 0, F is
conformal and preserves the angles).

Take any straight line passing through x (say for instance the parallel to the x axis)
and the four directions θ = 0, θ = π/4, θ = π/2, θ = 3π/4. Their image is a cross with
angles π/2.
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So at least one of them must enter the disk D(0, |F (x)|). For more precision, one may
wish to consider eight directions instead of four, since then one of them will point more
sharply towards the center of the disk.

If F ′(x) = F ′′(x) = 0, but F ′′′(x) 6= 0, one needs four directions (resp 8), but this time
in a sector of angle 2π/3, since angles will be multiplied by 3. If F ′(x) = · · · = F (k)(x) = 0,
F (k+1)(x) 6= 0, one needs four directions (resp. 8) in any sector of angle 2π/(k + 1).

So one can avoid to compute any derivative at all (including F ′ ) : divide a circle
around x in n sectors of angle 2π

n , and take four equi-distributed directions in each (or,
more simply, take 4n directions on the circle, with angles equal to π

2n ). Then for at least
one of them, |y − x| will diminish.

In all cases, we see that we can move x in such a way that |y−x| decreases (much more
slowly for a singular point than for a regular point, though). Repeating the procedure, we
finally obtain y = x , that is a root is found.

3. Staying in the original disk.

In the first step, when y is computed from x by (6), we know that there is a root of
P in the disk of diameter [x, y] . However, the way we move x , in later stages, may very
well take us outside this disk, so we may end up on another root than the one originally
located. Usually, this has no importance, for people want to find a root, and do not care
about a specific disk.

However, it may be useful to keep this extra information in mind. It may be the case,
for instance, if we try to locate several roots at the same time (using parallel machines):
If we can locate disjoint disks D1 , D2 , . . . at the beginning and if we are sure that each
procedure stays in the corresponding disk, we will end up with distinct roots.

So let’s see if we can modify the algorithm so as to stay in the original disk of diameter
[x, y] .

a) Assume first that x is a regular point. The set of directions dx for which x will
remain in the disk is the half plane H1 , tangent to the disk at x .

The set of directions dy for which y will remain in the disk is the half plane H2 ,
tangent to the disk at y .

Now, dy is obtained from dx by formula (8), so by a rotation of directions. This
means that H2 is the image of a half-plane H ′

1 passing through x . Usually, H1 and H ′
1

are not equal (both lines intersect at x) and so, if we take dx in the cone limited by H1

and H ′
1 , both x and y will move into the disk (and thus |y − x| will decrease).
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b) The only case where this construction does not work is when dy = dx , that is x

is a singular point.
Then we will see that, already for a polynomial of degree 3, one cannot usually stay

in a given disk. The example we now detail was already mentioned in §1.

Let P = z3 + az2 + bz + c . In symmetrized form, we have the equation

x1x2x3 +
a

3

(
x1x2 + x2x3 + x3x1

)
+

b

3

(
x1 + x2 + x3

)
+ c = 0. (14)

Taking x1 = x2 = x , x3 = y yields :

x2y +
a

3
(
x2 + 2xy

)
+

b

3
(
2x + y

)
+ c = 0. (15)

Let’s say we want y = 1 for x = 0. For this, we need

b = −3c. (16)

Now P ′2(0)− P (0)P ′′(0) = b2 − 2ac = 9c2 − 2ac , so 0 will be a singular point if

a =
9
2

c.

In this case, our polynomial P can be written :

P = z3 +
9
2

cz2 − 3cz + c.

If we write y = x − nF (x) = x + ϕ(x), we choose c so that ϕ′′(0) = 1. A simple
computation gives

ϕ′′(0) =
2 + 9c

c
, so c = −1/4. (17)

Taylor expansion at x = 0 gives :

y − 1
2

=
1
2

(x + 1)2
(

1− 5x3

(x + 1)2
+

x3ε(x)
(x + 1)2

)
, ε(x) → 0, x → 0

and so

|y − 1
2
| =

1
2
|x + 1|2

∣∣∣∣1−
5x3

(x + 1)2
+

x3ε(x)
(x + 1)2

∣∣∣∣. (18)

Staying in the disk means that |x−1/2| and |y−1/2| must decrease (or remain the same).
But the above formula means that both |x− 1/2| and |x + 1| should decrease, starting at
x = 0, and this is impossible.
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So here, in order to decrease |y − x| , we have to leave the circle (at least for one
of the points). But of course the motion may be arbitrarily small, and this pathological
phenomenon will occur only at singular points, that is at 2n − 2 isolated points. So we
can conclude that the algorithm will find a zero in any larger disk : if we start with points
x0 , y0 , and fix some ε > 0, we can build the algorithm (with small deplacement around
singular points) in such a way that it finds the root in the disk of center (x0 + y0)/2, and
radius 1

2 |x0 − y0|+ ε .

The algorithm will depend on ε , and the smaller ε is, the shorter some deplacements
will be. Therefore, the algorithm will take longer to converge.

4. Practical implementation of the algorithm.

Let P = a0 + a1z + · · · + anzn be a polynomial with complex coefficients, P ′ its
derivative. Let ε > 0 be a prescribed accuracy.

1. Start at the point x = −an−1/an , which is the barycenter of the zeros.

– If P ′(x) = 0 and P (x) = 0, x is a root.

– If P ′(x) = 0 and P (x) 6= 0, change x . Consider for instance one of the n points
x + e2iπk/n , k = 1, . . . , n .

2. Compute y = x − n
P (x)
P ′(x)

. Then we know that there is a zero in the disk of

diameter [x, y] .

3. Let F = P/P ′ . Compute F ′(x).

– If F ′(x) 6= 0, go to step 4.

– If F ′(x) = 0, go to step 7.

4. If F ′(x) 6= 0, write nF ′(x) using polar coordinates :

n F ′(x) = ρ eiθ

Let θ1 = Arg (y − x).

5. Define h ∈ CI by the properties :

Arg h = θ1 − θ

|h| =
|y − x|

max(ρ, 4)
.

6. Replace x + h by x , compute the new position of y using step 2. Check that
|y − x| has decreased. If not do step 5 again, but with h replaced by h/2 (repeat this
step enough times, so that |y − x| actually decreases : this will happen when h is small
enough).
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7. If F ′(x) = 0, compute F ′′(x).

– If F ′′(x) 6= 0, write nF ′′(x) = ρeiθ . Define h by

Arg h =
1
2
(θ1 − θ)

|h| =

√
2|y − x|

max(ρ, 4)

(If F ′′(x) = 0, go to F ′′′ . . . ).

8. Replace x + h by x , compute the new position of y using step 2. Check that
|y − x| has decreased. If not, do step 7 again, but with h replaced by h/2 ; repeat this
step enough times.

9. Repeat the procedure, until |y − x| < ε , the prescribed accuracy.

Remarks.

1. Since the quotient
|P (x)|
|P ′| can only decrease, and since we started at a point where

P ′ 6= 0, we are certain that the algorithm will never converge to a zero of P ′ (and, in fact,
it will avoid them) unless a zero of P ′ is also a zero of P (that is a multiple zero of P ).

2. There is some formal similarity with Newton’s method : if xn = x , then in
Newton’s method : xn+1 = y . But he we do not jump from x to y , we move them so as
to get them closer to each other.

3. To decide to jump from x to (x + y)/2 may be a very bad idea : if P = z1z2 + 1,
x = 1, y = −1, then x′ = (x + y)/2 = 0 and the corresponding y′ would be ∞ .

4. In some cases, y may not move when x does. This may happen locally, when
dy = 0, and this means that (1 − n)P ′2 + nPP ′′ = 0 at this point x . Or it may happen
globally, but only when P is of the form (x − λ)2 . None of these cases prevents the
algorithm from working : x gets closer to y and y does not move.

5. When a first x is chosen and y is returned, one more information is obtained,
namely that there is a root outside the open disk of diameter [x, y] . Indeed, this outside
is itself a circular region, which contains both x and y so must contain a root, by Walsh’s
principle. Therefore, we have the following situation (at any stage of the algorithm): Either
there is a root on the boundary circle, or there is a root inside the open disk and a root
outside the closed disk.
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