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0. Introduction

Let P (x1, . . . , xN ) =
∑

|α|=m aαxα1
1 · · ·xαN

N be a homogeneous polynomial of degree m in N variables ;
we write α = (α1, . . . , αN ), and |α| = α1 + · · ·+ αN .

A non-homogeneous polynomial can be transformed into a homogeneous one by adding one more vari-
able ; so, for instance, an ordinary one-variable polynomial P (z) =

∑m
0 ajz

j becomes homogeneous in two
variables : P (x1, x2) =

∑m
j=0 ajx

j
1x

m−j
2 . We will use freely this identification in the sequel, so what we say

applies a fortiori to one-variable ordinary polynomials.

Let ‖ . ‖ be a norm on the space of polynomials, and let P be a given polynomial. The problem : To
find

I(P ) = inf{‖PQ‖ ; ‖Q‖ = 1} (1)

has been extensively studied over the years, as well as the problem

S(P ) = sup{‖PQ‖ ; ‖Q‖ = 1}. (2)

Indeed, they correspond to a very natural question : P represents a fixed single system, and we want
to act on it ; only multiplicative actions are allowed. We want to find the best action, that is the Q which
optimizes some norm, depending on the problem (for instance : the lowest energy).

Mathematically speaking, such problems heavily depend on the norm which is taken. For instance, if
the norm is the l1 -norm in one variable (‖P‖ =

∑
|aj |), problem (1) is connected with spectral synthesis

(see J.-P. Kahane [13]).

Both problems are trivial for the L∞ norm :

‖P‖∞ = sup{|P (eiθ1 , . . . , eiθN )| ; θ1, . . . , θN ∈ Π},

and, for other norms, they may be trivial for special P ’s. But except in these cases, none of them has been
solved, for any norm.

They have finite dimensional versions :

In(P ) = inf{‖PQ‖ ; ‖Q‖ = 1, deg Q = n}, (3)

Sn(P ) = sup{‖PQ‖ ; ‖Q‖ = 1, deg Q = n}. (4)

For one-variable polynomials, the problems are easier with another normalization, namely Q(0) = 1,
and this is why they have been mostly studied with this normalization. For instance,

inf{‖PQ‖2 ; Q(0) = 1} = M(P ) (5)

where ‖P‖2 = (
∑
|aj |2)1/2 , M(P ) = exp

∫ 2π

0
log |P (eiθ)| dθ

2π is Mahler’s measure. The result (5) is Szegö’s
Theorem (see for instance [2], p. 195).

The same way, Bombieri and Vaaler [8] studied inf |PQ|∞ , where |P |∞ = max |aj | is the height of the
polynomial, in the case where both P and Q have integer coefficients (which implies |Q(0)| ≥ 1) ; they
showed that this infimum is again M(P ).

Among many other pieces of work, one should quote Donaldson and Rahman [12], for the ‖.‖2 norm,
and Q of degree 1.
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Here, we will solve completely problems (3) and (4) for Bombieri’s norm [P ] . The problem of the size of
factors of polynomials under Bombieri’s norm, which is related to the present study, was already considered
by Beauzamy-Bombieri-Enflo-Montgomery [4] and by Boyd [9], [10], [11]. We recall that, with our present
notation,

[P ] =

 ∑
|α|=m

|aα|2
α!
m!

1/2

,

where α! = α1! . . . αN ! .

We also recall the two inequalities√
m!n!

(m + n)!
[P ][Q] ≤ [PQ] ≤ [P ][Q] ; (6)

the left-hand side being due to Bombieri [4], the right-hand side to the author [3]. Initially, they suggested
the problem of finding

inf{[PQ] ; [P ] = 1, [Q] = 1}

and
sup{[PQ] ; [P ] = 1, [Q] = 1},

that is to find the extremal pairs (P,Q). These pairs were determined in Beauzamy-Frot-Millour [6] and [7],
Beauzamy [3], Reznick [14]. But here the problem is different : P is fixed, and we can play only with Q .
We now turn to a description of our results.

1. Description of the results

The key idea will be to build from P a sequence of polynomials (πj) (basically, they will just be partial
derivatives of P , multiplied by some extra variables), and then build a matrix, made of cross scalar products
of these polynomials. Then, for any Q , the quantity [PQ]2 appears to be just

∑
|[πj , Q]|2 , and optimization

problems can be handled very easily on the associated matrix.

Let n be fixed (the degree of Q in (3) or (4)). For any i = 1, . . . , N , we write Pi = ∂P
∂xi

. For any
k = 0, . . . ,min(m,n), any indexes ik+1, . . . , im , jk+1, . . . , jn , between 1 and N , we define the polynomial

Λ ik+1,...,im

jk+1,...,jn

(P ) = xjk+1 · · ·xjn
Pik+1,...,im

. (7)

All of them are polynomials of degree n . For a given k , there are Nn−k·Nm−k = Nm+n−2k such polynomials.
Altogether, there are

min(m,n)∑
k=0

Nm+n−2k = Nm+n 1−N−2(min(m,n)+1)

1−N−2
= ν

such polynomials. Let π1, . . . , πν be an enumeration of the polynomials

n!√
(m + n)!(m− k)!(n− k)!

Λ ik+1,...,im

jk+1,...,jn

(P ) (8)

(the order of the enumeration does not matter).
We observe that all these polynomials are well-defined and very easy to compute : they are just deriva-

tives of P , multiplied by some variables. Then we have :
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Proposition 1. – Let P be a homogeneous polynomial of degree m , in any number of variables. For any

n , any homogeneous polynomial Q of degree n , one has the identity :

[PQ]2 =
n!2

(m + n)!

min(m,n)∑
k=0

1
(m− k)!(n− k)!

×

×
∑

ik+1,...,im

jk+1,...,jn

∣∣∣∣[xjk+1 · · ·xjn
Pik+1,...,im

, Q
]∣∣∣∣2,

where [. , .] denotes the scalar product associated with Bombieri’s norm. Using the (πj) ’s, this identity can

be written :

[PQ]2 =
ν∑

j=1

∣∣[πi , Q]
∣∣2 .

We can now state the solution to the problems (3) and (4).

Theorem 2. – Let P be a homogeneous polynomial of degree m , in any number of variables. For a given

n , the solution to problem

inf{[PQ] ; Q homogeneous polynomial of degree n, [Q] = 1}

is the square root of the smallest non-zero eigenvalue of the self-adjoint matrix

G =
([

πj , πj′
])

1≤j,j′≤ν
.

Similarly, the solution to the problem

sup{[PQ] ; Q homogeneous polynomial of degree n, [Q] = 1}

is the square root of the largest eigenvalue of the same matrix.

The matrix G is quite large : roughly speaking it has size Nm+n . We can reduce it to a smaller matrix,
and get at the same time a description of the Q ’s for which the infimum [resp : supremum] is attained.

Let e1, . . . , eµ be any orthonormal basis (for the above scalar product) of the space of polynomials in N

variables of degree n (recall that µ =
(
N+n−1

n

)
) ; we can take for this basis simply monomials, with proper

normalization.

Let αi,j = [πi , ej ] , i = 1, . . . , ν , j = 1, . . . , µ and A = (αi,j). This is a ν × µ matrix. Note that
µ =

(
N+n−1

n

)
does not depend on m .

In the statements which follow, we identify a polynomial Q with the column-vector X of its expansion
in the basis (ej)j≤µ .

We can now state the second description of our results :

Proposition 3. – Let P , Q be as above ; we have the identity

[PQ]2 = ‖AX‖22 ,

where ‖ · ‖2 is the usual euclidean norm.

Let H be the matrix A∗A : this is a µ× µ self-adjoint matrix (thus smaller than G). We get :
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Theorem 4. – The solution of problems (3) and (4) is also the square root of the smallest (resp. largest)

non-zero eigenvalue of H . The corresponding Q is, after conjugation, the corresponding eigenvector of this

matrix.

We now turn to the proofs of the theorems.

2. The proofs

We assume the reader to be familiar with the contents of Beauzamy-Bombieri-Enflo- Montgomery [4]
and Beauzamy-Dégot [5]. We just briefly recall some notation.

Rather than under the reduced form (1), the polynomial P is written under the symmetric form

P (x1, . . . , xN ) =
N∑

i1,...,im=1

ci1,...,im
xi1 · · ·xim

, (9)

where
ci1,...,im =

1
m!

∂mP

∂xi1 · · · ∂xim

.

Both formulas are linked by the relation

ci1,...,im
=

α!
m!

aα ,

and Bombieri’s norm is then just :

[P ] =

 N∑
i1,...,im=1

|ci1,...,im |2
1/2

.

Now let u1, . . . , um , v1, . . . , vn be integers between 1 and m + n . Let

U = (u1, . . . , um) , V = (v1, . . . , vn).

We say that (U, V ) forms a shuffle of type (m,n) if u1 < · · · < um , v1 < · · · < vn , and the set
{u1, . . . , um, v1, . . . , vn} is a permutation of {1, . . . ,m + n} . We write sh(m,n) for the set of shuffles
of type (m,n). We recall from [4] the formula (see also [14] for another presentation)

[PQ]22 =
(

m!n!
(m + n)!

)2 ∑
(U,V ),(U ′,V ′)

∑
lU∩U′

∑
lV ∩V ′

∣∣∣∣ ∑
lW

clU∩U′ ,lW dlW ,lV ∩V ′

∣∣∣∣2 (10)

where lU stands for lu1 , . . . , lum
, the same with lU ′ , lV , lV ′ , lW ; the c ’s are the coefficients of P and the

d ’s are the coefficients of Q :

Q(x1, . . . , xN ) =
N∑

j1,...,jn

dj1,...,jn
xj1 · · ·xjn

(11)

written under symmetric form.

First, we observe that the cardinality of W is determined by that of U ∩ U ′ (or that of V ∩ V ′ ). Its
value is

|W | = m− |U ∩ U ′| = n− |V ∩ V ′|.
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Next, we observe (as G. Bacquet already did in [1]) that the value of any sum∑
lW

clU∩U′ ,lW dlW ,lV ∩V ′

depends only on the cardinality of W , since all the c ’s and all the d ’s are invariant under permutation of
the indexes.

Let νk be the number of terms, in (10), for which |W | = k (k = 0, 1, . . . ,min(m,n)). Then easy
combinatorics show that

νk =
(

m + n

m

) (
m

k

) (
n

k

)
. (12)

For k = 0, 1, . . . ,min(m,n), we define

αk = αk(P,Q) =
∑

ik+1,...,im

jk+1,...,jn

∣∣ ∑
i1,...,ik

ci1,...,im
di1,...,ik,jk+1,...,jn

∣∣2. (13)

Then, using (12) and (13), formula (10) becomes :

[PQ]2 =
(

m!n!
(m + n)!

)2 min(m,n)∑
k=0

νk αk

=
min(m,n)∑

k=0

(
m
k

)(
n
k

)(
m+n

m

) αk . (14)

We will now introduce partial derivatives and consider (13) as a scalar product. Recall from [1], [5], [14] that

Pik+1,...,im
(x1, . . . , xN ) =

m!
k!

∑
i1,...,ik

ci1,...,im xi1 · · ·xik

Qjk+1,...,jn
(x1, . . . , xN ) =

n!
k!

∑
j1,...,jk

dj1,...,jn
xj1 · · ·xjk

(15)

which are both polynomials of degree k .
If we set (as was done in [1]) :

Ak = Ak(P,Q) =
∑

ik+1,...,im

jk+1,...,jn

∣∣∣∣[Pik+1,...,im , Qjk+1,...,jn

]∣∣∣∣2, (16)

we find

Ak =
m!2n!2

k!4
αk ,

and (14) becomes :

[PQ]2 =
1

(m + n)!

min(m,n)∑
k=0

k!2

(m− k)!(n− k)!
Ak . (17)

Now, in the expression of Ak , we will put all partial derivatives on P . This is done using the transpo-
sition formulas from [5] :

[
Pik+1,...,im

,
∂m−kQ

∂xjk+1 · · · ∂xjn

]
=

n!
k!

[
xjk+1 · · ·xjn

Pik+1,...,im
, Q

]
. (18)
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We obtain the identity

[PQ]2 =
n!2

(m + n)!

min(m,n)∑
k=0

1
(m− k)!(n− k)!

×

×
∑

ik+1,...,im

jk+1,...,jn

∣∣∣∣[xjk+1 · · ·xjn Pik+1,...,im , Q
]∣∣∣∣2. (19)

With the notation introduced in section 1, this becomes

[PQ]2 =
ν∑

j=1

∣∣[πi , Q]
∣∣2, (20)

which proves Proposition 1.

To find the minimum or the maximum of (20) when [Q] = 1 becomes a simple problem.
Let, as we already said, e1, . . . , eµ be an orthonormal basis of the space of polynomials of degree n ,

homogeneous in N variables. Let

Q =
µ∑

k=1

γkek,

πi =
µ∑

j=1

αi,jej , i = 1, . . . , ν,

be the orthogonal decompositions of Q and the πi ’s respectively on this basis. Then :

[PQ]2 =
ν∑

i=1

|
µ∑

k=1

αi,kγk|2. (21)

If A is the matrix (αi,j) i=1,...,ν
j=1,...,µ

and X =

 γ1
...

γµ

 , then (21) becomes :

[PQ]2 = ‖AX‖22 = tXA∗AX, (22)

and Proposition 3 is proved.
Since X and X have the same norm, the infimum in (22) is obtained for the smallest eigenvalue of

A∗A (X being the corresponding eigenvector), and the supremum for the largest eigenvalue. We observe
that the eigenvalues are real positive, and that none of them can be zero. This proves Theorem 4. In order
to prove Theorem 2, we just observe that the matrix G is simply AA∗ , so the non-zero eigenvalues are the
same for G and for H .

The statement of Proposition 1, that is formula (19), may be given with P under contracted form :

Proposition 5. – Let P , Q be homogeneous polynomials of degrees m and n respectively. Then :

[PQ]2 =
n!2

(m + n)!

min(m,n)∑
k=0

∑
|α|=n−k
|β|=m−k

1
α!β!

∣∣[xαDβP,Q
]∣∣2,

where

xα = xα1
1 · · ·xαN

N , Dβ =
∂m−k

∂xβ1
1 · · · ∂xβN

N

.
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Indeed, this follows immediately from (19) : for given α1, . . . , αN , there are (n−k)!
α! terms xjk+1 · · ·xjn

equal to xα , and for given β1, . . . , βN , there are (m− k)!/β! terms Pik+1,...,im
equal to DβP .

Using the contracted form of P , we can, instead of the enumeration (8), consider the enumeration of
the polynomials

n!√
(m + n)!α!β!

xαDβP, (23)

for k = 0, . . . ,min(m,n), |α| = n − k , |β| = m − k , and take for G the matrix, say G1 , made of scalar
products of these polynomials. This is a self-adjoint matrix, of size

ν1 =
min(m,n)∑

k=0

(
N + n− k − 1

n− k

) (
N + m− k − 1

m− k

)
and ν1 < ν . The general term of G1 is

n!2

(m + n)!
√

α!β!α′!β′!

[
xαDβP, xα′

Dβ′P
]
. (24)

Using the identity given in Beauzamy-Dégot [5], one can transform the above expression, in order to get
scalar products involving only derivatives of P (and no xα ’s anymore). Details of the computation are left
to the reader ; (24) is transformed into :

n!2

(m + n)!

√
α!α′!
β!β′!

∑
ν≥0
|γ|=ν

(k + k′ + ν − n)!
γ!3

[
Dα′−γ+βP,Dα−γ+β′P

]
. (25)

Since Bombieri’s norm depends on the degree (in fact, there is a different norm for each degree), problem
(3) was stated for a fixed degree of Q . One can now wonder : what is the solution of problem (1) that is,
what do we get if we let the degree of Q vary also ?

3. Limit problems

For the minimization problem, we obtain :

Proposition 6. – If deg P > 0 , I(P ) = 0 .

Proof. We will show that In(P ) → 0 when n → +∞ .
In order to do this, we use Theorem 1, with the matrix G1 = G1(n) defined in (24).
Let λn be the smallest non-zero eigenvalue of G1(n). We want to show that λn → 0. Since λn =

1/‖G−1
n ‖ , all we have to do is to find vectors Xn , with ‖Xn‖ = 1, such that G1(n)Xn → 0. Here the norms

are l2 -norms, but this won’t matter, as we will see.

For Xn , we simply take


1
0
...
0

 , so G1(n)Xn is just the first column of G1(n). We now identify this

first column, using (24). We have k = 0, α = (n, 0, . . . , 0), β = (m, 0, . . . , 0), and DβP is just m! times
the coefficient of xm

1 in P , which we simply call c . So we get from (24) :

n!3/2

(m + n)!

√
m!

α′!β′!
c

[
xn

1 , xα′
Dβ′P

]
. (26)

This scalar product is 0, unless α′ = (n− k′, 0, . . . , 0). Then we get

n!3/2

(m + n)!

√
m!

(n− k′)!β′!
c

[
xk′ , Dβ′P

]
, (27)

where |β′| = m− k′ , k′ ≤ m .
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So we see that the number of no-zero terms in (27) is independent of n , though the size of G1(n)
increases with n .

Let

A =
n!3/2

(m + n)!

√
m!

(n− k′)!β′!
.

Then

A ≤ n!3/2

(m + n)!

√
m!

(n−m)!
.

So

A2 ≤ n!2

(n + m)!2
n!

(n−m)!
m!

and, if m > 0, this can be written

A2 ≤ n

(n + m)2
· · · n−m + 1

(n + 1)2
m!

and each of the fractions tends to zero when n → +∞ . This proves our claim.

Corollary 7. – For any non-constant homogeneous polynomial P , there is a sequence of homogeneous

polynomials Qn (of increasing degrees), such that [Qn] = 1 and [PQn] → 0 .

The Qn ’s can be explicitly determined from Theorem 4. In some cases, they are immediate : if
P = (1 + z)m , then Qn = (1 − z)n/2n/2 . Indeed, since the pair ((1 + z)m , (1 − z)n ) is extremal in
Bombieri’s inequality, we have

[PQn] =

√
m!n!

(m + n)!
[P ][Qn] =

√
m!n!

(m + n)!
2m/2.

We now turn to problem (2), dealing with the supremum. First, we observe that, trivially,

sup{[PQ] ; Q homogeneous of any degree and [Q] = 1} = [P ],

since [PQ] ≤ [P ] by [3] and since the supremum is attained for Q = 1.
If we now look at the finite dimensional problem Sn(P ), things are not so simple. For polynomials of

the form P = (
∑

aixi)m , one has Sn(P ) = [P ] for all n , but there are cases for which S(P ) < [P ] :

Proposition 8. – The polynomial P = x1x2 satisfies [P ] = 1/
√

2 , limSn(P ) = 1/2 .

Proof. We will build the matrix G1 defined in (24), for Q of fixed degree n . So first we have to build the
list (23), where m = 2, that is the enumeration of the polynomials

n!√
(n + 2)!α!β!

xα1
1 xα2

2 DβP,

with |α| = n− k , |β| = 2− k , k = 0, 1, 2.
For k = 0, this leads to a first list :

L1 :
n!√

(n + 2)!(n− j)!j!
xn−j

1 xj
2 , j = 0, . . . , n.

For k = 1, β = (1, 0), we get

L2 :
n!√

(n + 2)!(n− j − 1)!j!
xn−j

1 xj
2 , j = 1, . . . , n.
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For k = 1, β = (0, 1), we get

L3 :
n!√

(n + 2)!(n− j − 1)!j!
xn−j

1 xj
2 , j = 0, . . . , n− 1.

For k = 2,

L4 :
n!√

(n + 2)!(n− j − 1)!(j − 1)!
xn−j

1 xj
2 , j = 1, . . . , n− 1.

The matrix G1 is built from (24), using the cross-scalar products of all elements, so it has 16 blocks
A1,1 ,. . . , A4,4 , where Ai,j is the block made of the scalar products of the list Li with the list Lj . All
these blocks are square, except, for some of them, a first or a last row of zeros, and all of them are diagonal.
The diagonal terms are very easy to compute : with c = 1/(n + 1)(n + 2), we find for A1,1 : c ; for
A1,2 : c

√
n− j ; for A1,3 : c

√
j ; for A1,4 : c

√
(n− j)j ; for A2,2 : cj ; for A2,3 : c

√
(n− j)j ; for

A2,4 : cj
√

n− j ; for A3,3 : c(n− j) ; for A3,4 : c(n− j)
√

j ; for A4,4 : cj(n− j).
All these blocks, except A4,4 , have an operator norm tending to zero when n → ∞ (recall that, for a

diagonal matrix with positive entries, the operator norm is just the maximum of the terms on the diagonal).
For A4,4 , the maximum is attained for j = n/2 and its value is n2

4(n+1)(n+2) → 1/4 when n → ∞ . So
Sn(P ) → 1/2, and this proves our claim.

As an application of the previous concepts, we now compute the norm of a differential operator P (D).

4. The norm of a differential operator

Let P be as before a homogeneous polynomial in N variables. We now call p its degree, since m and
n will be used for other purposes. If the polynomial is written as in (1), the associated differential operator
is

P (
∂

∂x1
, . . . ,

∂

∂xN
) =

∑
|α|=p

aα
∂α1

∂xα1
1

· · · ∂αN

∂xαN

N

,

which is written P (D1, . . . , Dn), or more simply P (D).
Let Pn be the space of homogeneous polynomials in N variables, of degree n , endowed with the norm

[ . ](n) . Then the differential operator P (D) acts on Pn and has its value in Pm , m = n − p (m = 0 if
p ≥ n). We may therefore define its operator norm, from Pn into Pm , by the standard formula :

[P (D)]op(n,m) = sup{[P (D)Q](m) ; Q ∈ Pn, [Q](n) ≤ 1}.

We can now state our Theorem :

Theorem 9. – Let P be a homogeneous polynomial in N variables x1, . . . , xN , with (total) degree p . Let

P (D) be the associated differential operator. Then :

[P (D)]op(n,m) =
n!
m!

Sn(P ),

where Sn(P ) is defined in formula (4), for Bombieri’s norm.

Proof. Indeed, we have, using the transposition formulas of [5] or [14],

[P (D)]op(n,m) = sup{[P (D)Q](m) ; [Q](n) ≤ 1}
= sup{|[P (D)Q,R]| ; [Q](n) ≤ 1, [R](m) ≤ 1}

=
n!
m!

sup{|[Q,PR]| ; [Q](n) ≤ 1, [R](m) ≤ 1}

=
n!
m!

sup{[PR](n) ; [R](m) ≤ 1}

=
n!
m!

sup{[PR](n) ; [R](m) ≤ 1}

=
n!
m!

Sm(P ),
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as we announced. This proves the Theorem.

We observe that, since

[PR] ≥
√

p!m!
n!

[P ][R]

by Bombieri’s inequality, we find a fortiori

[P (D)]op(n,m) ≥ n!
m!

√
p!m!
n!

[P ] =

√
n!p!
m!

[P ] =

√
n!(n−m)!

m!
[P ].

5. Other problems

The identities given in Proposition 1 and 3 also allow us to deal with other optimization problems,
involving other normalizations. We have considered here the normalization [Q] = 1 because it is the
hardest, but the corresponding problems with other constraints are immediately handled. Let us consider
for instance the problem (in one variable) :

inf{[PQ] ; Q(0) = 1, deg(Q) = n}.

This means that the homogeneous associated Q finishes with the term xn
2 . So the vector column X is of

the form

X =


γ0
...

γn−1

1


If we denote by A1 , A2 , . . . An+1 the column-vectors of A , we have

AX = γ0A1 + · · · γn−1An + An+1 (28)

and the minimum of AX is just the distance between An+1 and the vector space spanned by A1 , . . . , An ,
that is the distance between An+1 and its projection onto this subspace.

But An+1 is made of the constant coefficients of each πj , and the last πj in the enumeration is just
n!√

(n + m)!(n−m)!
xn−m

2 P , whose constant term (that is the coefficient of xn
2 ) is at most |P (0)| . The other

terms in the enumeration have constant terms at most Cn!/
√

(n + m)!(n−m + 1)! ≤ C/
√

n−m + 1 → 0.
Since conversely [PQ] ≥ |P (0)| , we get the formula

inf{[PQ] ; Q(0) = 1} = |P (0)|.

This formula itself is obvious (taking simply Q = xn
2 gives it), so the interest of (28) lies rather in the

finite-dimensional geometric description, than in the asymptotics when n →∞ .
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[13] Kahane, J.-P. : Séries de Fourier absolument convergentes. Springer Verlag, 1970.
[14] Reznick, Bruce : An inequality for products of polynomials. Proceedings A.M.S., vol. 117, 4, 1993, pp.

1063–1073.

11


