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Abstract. – We deal here with homogeneous polynomials in many variables and their hypercube represen-
tation, introduced in [5]. Associated with this representation there is a norm (Bombieri’s norm) and a scalar
product. We investigate differential identities connected with this scalar product. As a corollary, we obtain
Bombieri’s inequality (originally proved in [4]), with significant improvements.

The hypercube representation of a polynomial was elaborated in order to meet the requests of massively
parallel computation on the “Connection Machine” at E.T.C.A. ; we see here once again (after [3] and [5])
the theoretical power of the model.

october 1993

Supported by the C.N.R.S. (France) and the N.S.F. (U.S.A.),
by contracts E.T.C.A./C.R.E.A. no 20367/91 and no 20388/92 (Ministry of Defense, France)
by research contract EERP-FR 22, DIGITAL Eq. Corp.
and by NATO grant CRG 930760



1. The hypercube representation and Bombieri’s norm.

Let
P (x1, . . . , xN ) =

∑

|α|=m

aα xα1
1 · · ·xαN

N (1)

be a homogeneous polynomial in N variables x1, . . . , xN , with complex coefficients and degree m . Here, as
usual, we write α = (α1, . . . , αN ), |α| = α1 + · · ·+ αN .

For any i1, . . . , im , 1 ≤ i1 ≤ N, . . . , 1 ≤ im ≤ N , we define, as in [4] :

ci1,...,im =
1
m!

∂mP

∂xi1 · · · ∂xim

, (2)

and by Taylor’s formula, we have :

P (x1, . . . , xN ) =
N∑

i1,...,im=1

ci1,...,im xi1 · · ·xim , (3)

which is called symmetric form of the polynomial.
For a polynomial P of degree m , Bombieri’s norm is defined as (see [4]) :

[
P

]
(m)

=




N∑

i1,...,im=1

|ci1,...,im |2



1/2

. (4)

We usually omit the subscript (m) but it should be clear that the norm depends on the degree of the
polynomial.

As explained in [5], both (3) and (4) have a geometric description, by means of the hypercube repre-
sentation of the polynomial : in the hypercube [0, 1]m , we define the Nm points Mi1,...,im with coordinates
i1/N ,. . . , im/N , (1 ≤ i1 ≤ N, . . . , 1 ≤ im ≤ N). We now put each coefficient ci1,...,im onto the correspond-
ing point Mi1,...,im : this operation is called representation of the polynomial on the hypercube. Bombieri’s
norm appears as the canonical l2 -norm associated with this representation.

If we start with any polynomial P given as in (1), it can be written in many ways under the form

P (x1, . . . , xN ) =
N∑

i1,...,im=1

bi1,...,im xi1 · · ·xim , (5)

but the symmetric representation (3) has a particular property, as the following Proposition shows (it was
communicated to us by Christian Millour) :

Proposition 1. – Among all representations of P of the form (5), the symmetric one (3) is the one for

which the l2 -norm is minimal.

Proof. – For any i1, . . . , im , if σ is a permutation of {i1, . . . , im} , we have

∑
σ

bσ(i1),...,σ(im) =
∑

σ

cσ(i1),...,σ(im) ,

and cσ(i1),...,σ(im) = ci1,...,im for any σ . Therefore, the proposition follows from the observation that, if (ai)
are any complex numbers with fixed sum,

∑ |ai|2 is minimal when all the ai ’s are equal.
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2. The associated scalar product.

Canonically associated with Bombieri’s norm
[ ]

(m)
, there is a scalar product : if P , Q are two

homogeneous polynomials with same degree m , written in symmetric form as

P (x1, . . . , xN ) =
N∑

i1,...,im=1

ci1,...,im xi1 · · ·xim ,

Q(x1, . . . , xN ) =
N∑

i1,...,im=1

di1,...,im
xi1 · · ·xim

,

then we set :
[
P, Q

]
(m)

=
N∑

i1,...,im=1

ci1,...,im
di1,...,im

.

This scalar product appears already in Bruce Reznick [10], where the following result can be found :

Proposition 2. – Let b = (b1, . . . , bN ) and define δb = b1x1 + · · · + bNxN . Then, for any homogeneous

polynomial P with degree m :

P (b1, . . . , bN ) =
[
P, δb

m
]
.

Proof. – We just observe that δb
m can be written in symmetric form

δm
b

(x1, . . . , xN ) =
N∑

i1,...,im=1

bi1 · · · bim xi1 · · ·xim , (6)

and the result follows. This result justifies the notation “δb ”, since this polynomial behaves as a Dirac
measure for this scalar product.

As we did for the norm, we usually omit the subscript (m) in the notation of the scalar product and
write simply

[
P,Q

]
, but one should remember that P and Q must be of the same degree (or are considered

so), and that the scalar product depends on that degree.
We observe that, in order to define the scalar product, only one of the polynomials needs to be written

in symmetric form :

Proposition 3. – Let P =
∑

i1,...,im
ci1,...,imxi1 · · ·xim be written in symmetric form (3), and

Q =
∑

j1,...,jm

dj1,...,jmxj1 · · ·xjm

be any homogeneous polynomial of degree m (the d ’s need not be invariant under permutation of indices).

Then : [
P,Q

]
=

∑

i1,...,im

ci1,...,imdi1,...,im .

Proof. – Let
Q =

∑

j1,...,jm

d′j1,...,jm
xj1 · · ·xjm

be the symmetric form of Q . Then
[
P,Q

]
=

∑

i1,...,im

ci1,...,imd′i1,...,im
. (7)

But
d′j1,...,jm

=
1
m!

∑

σ∈Sm

djσ(1),...,jσ(m)

where Sm is the group of permutations of {1, . . . ,m} . Substituting into (7) and taking into account the
symmetry of the c ’s, we obtain the result.

We now investigate a few special situations :
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Proposition 4. – Let P1 , . . . , Pk be homogeneous polynomials in N variables x1 , . . . , xN , with degrees

m1 , . . . , mk . Let m = m1 + · · · + mk , and let also q1, . . . , qm be homogeneous polynomials of degree 1 .

Then :
[
P1 · · ·Pk , q1 · · · qm

]
=

1
m!

∑
σ

[
P1, qσ(1) · · · qσ(m1)

]× · · · × [
Pk, qσ(m−mk+1) · · · qσ(m)

]
,

where σ runs over all permutations of {1, . . . m} .

Proof. – For i = 1, . . . , m , we write

qi =
N∑

j=1

qijxj ,

and we obtain a symmetric representation of q1 · · · qm :

q1 · · · qm =
1
m!

N∑

i1,...,im=1

∑
σ

q1,iσ(1) · · · qm,iσ(m) xi1 · · ·xim .

This can also be written :

q1 · · · qm =
1
m!

N∑

i1,...,im=1

∑
σ

qσ(1),i1 · · · qσ(m),im
xi1 · · ·xim

.

Now, we write each Pj under the form
Pj =

∑

Ij

c
(j)
Ij

XIj

where Ij = {imj−1+1, . . . , imj} , and XIj stands for ximj−1+1 · · ·ximj
.

Then a non-symmetric representation of P1 · · ·Pk is given by

P1 · · ·Pk =
∑

I1,...,Ik

c
(1)
I1
· · · c(k)

Ik
XI1 · · ·XIk

.

Using Proposition 3, we find :
[
P1 · · ·Pk, q1 · · · qm

]
=

1
m!

∑

i1,...,im

∑
σ

c
(1)
I1
· · · c(k)

Ik
qσ(1),i1 · · · qσ(m),im

=
1
m!

∑
σ

(
∑

I1

c
(1)
I1

qσ(1),i1 · · · qσ(m),im1
)× · · ·

· · · × (
∑

Ik

c
(k)
Ik

qσ(m−mk+1),im−mk+1
· · · qσ(m),im

)

=
1
m!

∑
σ

[
P1, qσ(1) · · · qσ(m1)

] · · · [Pk, qσ(m−mk+1) · · · qσ(m)

]
,

which concludes the proof.

This proposition has several corollaries (which of course have direct proofs) :

Corollary 5. – Let p1, . . . , pm , q1, . . . , qm be two sets of homogeneous polynomials of degree 1 , with

variables x1, . . . , xN . Then :

[
p1 · · · pm, q1 · · · qm

]
=

1
m!

∑

σ∈Sm

[
p1, qσ(1)

] · · · [pm, qσ(m)

]
,

where σ runs over the set Sm of all permutations of {1, . . . , m} .

In the next corollary, we give an expression of the scalar product of two polynomials in one variable z ,
with same degree m . This expression uses the zeros of both polynomials :
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Corollary 6. – Let P = (z − a1) · · · (z − am) , Q = (z − b1) · · · (z − bm) . Then :
[
P,Q

]
=

1
m!

∑

σ∈Sm

(1 + a1bσ(1)) · · · (1 + ambσ(m)),

where σ runs over the set Sm of all permutations of {1, . . . , m} .

This corollary is an obvious consequence of Corollary 5. We identify the one-variable polynomial z − a

with the homogeneous two-variable polynomial z − az′ .
An expression of

[
P, Q

]
, using the zeros of P and Q , was already given by Y. Legrandgérard [8]. It

differs from this one, and is more complicated.

3. The multi-linear functional associated with a many-variable polynomial .

Let P be a homogeneous polynomial in N variables. Then, Littlewood’s theory associates to it a
multi-linear form L on CI N × · · · × CI N , by the formula

L(Z(1), . . . , Z(m)) =
1
m!

1
2m

∑
ε1,...,εm=±1

ε1 · · · εm ×

× P (
m∑

j=1

εj Z
(j)
1 , . . . ,

m∑

j=1

εj Z
(j)
N ), (8)

where each Z(j) stands for (Z(j)
1 , . . . , Z

(j)
N ).

That fact that L is indeed multi-linear is not a priori clear ; a proof can be found in S. Dineen [6]. But
this fact will become obvious once we establish :

Proposition 7. – The form L coincides with the multi-linear form generated by the hypercube, that is :

L1(Z(1), . . . , Z(m)) =
N∑

i1,...,im=1

ci1,...,im Z
(1)
i1
· · ·Z(m)

im
. (9)

Since quite obviously L1 is linear with respect to each variable, the same will be true for L .

Proof. – If in (8) we write P under symmetric form (3) and substitute, we get :

L(Z(1), . . . , Z(m)) =
1

m! 2m

∑
ε1,...,εm=±1

ε1 · · · εm

N∑

i1,...,im=1

ci1,...,im ×

× (
m∑

j=1

εj Z
(j)
i1

) · · · (
m∑

j=1

εj Z
(j)
im

)

=
1

m! 2m

N∑

i1,...,im=1

ci1,...,im

∑
ε1,...,εm=±1

ε1 · · · εm (
m∑

j=1

εj Z
(j)
i1

) · · · (
m∑

j=1

εj Z
(j)
im

).

Using Rademacher functions (see for instance [2]), this can be written more simply :

L =
1
m!

N∑

i1,...,im=1

ci1,...,im

∫ 1

0

r1(t) · · · rm(t)(
m∑

j=1

rj(t)Z
(j)
i1

) · · · (
m∑

j=1

rj(t)Z
(j)
im

)dt.

We expand all products and observe that all terms have integral 0, except those which give r2
1(t) · · · r2

m(t) :
these ones have integral 1. This way, we obtain :

L =
1
m!

∑
u

N∑

i1,...,im=1

ci1,...,im Z
(u1)
i1

· · ·Z(um)
im

,

where u = (u1, . . . , um) runs through all permutations of {1, . . . , m} . We rewrite

Z
(u1)
i1

· · ·Z(um)
im

= Z
(1)
iu−1(1)

· · ·Z(m)
iu−1(m)

,

and use the fact that ciu−1(1),...,iu−1(m)
= ci1,...,im and obtain the result.
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As an example, the polynomial P (x1, x2) = x3
1 − 3x2

1 x2 + x3
2 gives in symmetric form x3

1 − (x1x1x2 +
x1x2x1 + x2x1x1) + x3

2 , and the associated tri-linear form is :

L(Z(1), Z(2), Z(3)) = Z
(1)
1 Z

(2)
1 Z

(3)
1 − (Z(1)

1 Z
(2)
1 Z

(3)
2 + Z

(1)
1 Z

(2)
2 Z

(3)
1 + Z

(1)
2 Z

(2)
1 Z

(3)
1 )

+ Z
(1)
2 Z

(2)
2 Z

(3)
2 .

As pointed out to us by Andrew Tonge, the above proposition is known to the specialists of the multi-
linear functional, though we could not find a published proof. Moreover, it does not seem to provide any
quantitative improvement of the results on the norm of the multi-linear functional, obtained originally by
Banach and completed by various authors (R. Aron - J. Globevnik [1], L. Harris [7], Y. Sarantopoulos [11],
I. Zalduendo [12]).

4. Differential identities.

Let’s come back to scalar products. The basic observation (already made by Bruce Reznick in [10]) is
that multiplication by a variable on one side becomes derivation on the other side. Precisely, we have :

Lemma 9. – If P is of degree m− 1 and Q of degree m :
[
x1P, Q

]
(m)

=
1
m

[
P,

∂Q

∂x1

]
(m−1)

.

Proof. – Of course, it’s enough to prove the formula when P , Q are monomials, say P = xα1
1 · · ·xαN

N (with
|α| = m− 1), Q = xβ1

1 · · ·xβN

N (with ( |β| = m). Then
[
x1P, Q

]
(m)

=
[
xα1+1

1 xα2
2 · · ·xαN

N , xβ1
1 · · ·xβN

N

]
(m)

and this is 0, except if β1 = α1 + 1, β2 = α2, . . . , βN = αN , in which case the value is
[
xβ1

1 · · ·xβN

N

]2
(m)

=
β1! · · ·βN !

m!
.

Similarly,
[
P,

∂Q

∂x1

]
(m−1)

=
[
xα1

1 · · ·xαN

N , β1x
β1−1
1 xβ2

2 · · ·xβN

N

]
(m−1)

is 0, except if α1 = β1 − 1, α2 = β2, . . . , αN = βN , in which case the value is

β1

[
xα1

1 · · ·xαN

N

]2
(m−1)

= β1
α1! · · ·αN !
(m− 1)!

=
β1! · · ·βN !
(m− 1)!

;

the result follows.

Corollary 10. – (Transposition of a linear factor) Let P be of degree m− 1 and Q be of degree m . Then

[
(
∑

ajxj)P, Q
]
(m)

=
1
m

[
P,

∑
aj

∂Q

∂xj

]
(m−1)

.

If P and Q are one-variable polynomials (with the identification between
∑m

0 ajz
j and

∑m
0 ajz

jz′m−j ),
the polynomial a∂Q

∂z + a′ ∂Q
∂z′ is the homogeneous version of the polynomial mQ(z) + (a − z)Q′(z), which

is called the polar derivative of Q at the point a (cf. Marden [9]) and denoted by Q1(a, z). So, for one
variable polynomials, the above formula becomes

[
(az + 1)P,Q

]
(m)

=
1
m

[
P, Q1(a, z)

]
(m−1)

.

From Lemma 9 will follow several differential identities. In order to state them, we recall the following
definitions, which are standard in P.D.E.

If P (x1, . . . , xN ) =
∑

aαxα1
1 · · ·xαN

N is a polynomial, the associated differential operator is

P (D1, . . . , DN ) =
∑

aαDα1
1 · · ·DαN

N

where Dj stands for
∂

∂xj
. This operator is usually written simply P (D), with D = (D1, . . . , DN ). We

write simply Pi instead of
∂P

∂xi
, and more generally Pi1,...,ik

instead of
∂kP

∂xi1 · · · ∂xik

.
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We also define
P ∗(x1, . . . , xN ) =

∑

|α|=m

aα xα1
1 · · ·xαN

N .

A simple generalization of Lemma 9, also stated by Bruce Reznick [10], is :

Lemma 11. – Let P , Q , R be homogeneous polynomials, with deg P = p , deg Q = q , deg R = r , with

r = p + q . Then :
[
PQ, R

]
(r)

=
q!
r!

[
Q, P ∗(D)R

]
(q)

.

We can now state the most general form of the differential identities.

Theorem 12. – Let P , Q , R , S be four homogeneous polynomials, respectively of degree p , q , r , s , with

p + q = r + s . Then

[
PQ, RS

]
(p+q)

=

1
(p + q)!

∑

k≥0

(q − r + k)!
k!

N∑

i1,...,ik=1

[
R∗i1,...,ik

(D)Q, P ∗i1,...,ik
(D)S

]
(q−r+k)

.

We observe that in this sum the terms are 0
– if k > p (since P ∗i1,...,ik

= 0),
– if k > r (since R∗i1,...,ik

= 0),
– if r − k > q (since R∗i1,...,ik

(D)Q = 0) and
– if r − k > s (since P ∗i1,...,ik

(D)S = 0).

We will give two proofs of the theorem : the first one is longer but more transparent, the second one
shorter and less transparent.

First proof. We have if, P =
∑

ci1,...,ipxi1 · · ·xip , R =
∑

dj1,...,jrxj1 · · ·xjr :

[
PQ,RS

]
=

∑

i1,...,ip

∑

j1,...,jr

ci1,...,ipdj1,...,jr

[
xi1 · · ·xip Q, xj1 · · ·xjr S

]
p+q

=
1

p + q

∑

i1,...,ip

∑

j1,...,jr

ci1,...,ipdj1,...,jr

[
xi2 · · ·xipQ,

∂

∂xi1

(xj1 · · ·xjr S)
]
p+q−1

,

by Lemma 9.
We now need a lemma which describes the exchange between a multiplication and a derivation.

Lemma 13. – For all homogeneous polynomials R , Q with same degree,

∑

i,j

ci,j

[
R,

∂

∂xi
(xjQ)

]
= (

∑

j

cj,j)
[
R, Q

]
+

∑

i,j

ci,j

[
R, xj

∂Q

∂xi

]

Proof of Lemma 13. We have simply

∑

i,j

ci,j

[
R,

∂

∂xi
(xjQ)

]
=

∑

j

∑

i 6=j

ci,j

[
R,

∂

∂xi
(xjQ)

]
+

∑

j

cj,j

[
R,

∂

∂xj
(xjQ)

]

=
∑

j

∑

i 6=j

ci,j

[
R, xj

∂Q

∂xi

]
+

∑

j

cj,j

[
R, xj

∂Q

∂xj
+ Q

]
,

and the Lemma follows.
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We observe that the statement of this lemma is quite similar to what one gets, computing a derivative
in the sense of distributions : a derivative plus a jump. The similarity is quite natural : here also, we have
a derivative inside a duality.

Let’s now return to the proof of Theorem 12.

Using Lemma 13, we find :

[
PQ, RS

]
=

1
p + q

∑

i1,...,ip

∑

j2,...,jr

ci1,...,ip
di1,j2,...,jr

[
xi2 · · ·xip

Q, xj2 · · ·xjr
S

]

+
1

p + q

∑

i1,...,ip

∑

j1,...,jr

ci1,...,ip
dj1,...,jr

[
xi2 · · ·xip

Q, xj1

∂

∂xi1

(xj2 · · ·xjr
S)

]

Repeating the process, we get :

=
r

p + q

∑

i1,...,ip

∑

j2,...,jr

ci1,...,ip
di1,j2,...,jr

[
xi2 · · ·xip

Q, xj2 · · ·xjr
S

]

+
1

p + q

∑

i1···ip

∑

j1···jr

ci1···ip
dj1···jr

[
xi2 · · ·xip Q, xj1 · · ·xjrSi1

]
.

In order to argue by induction, we define

L(l, k) =
∑

i1,...,ip

∑

jl+1,...,jr

ci1,...,ip di1,...,il,jl+1,...,jr×

× [
xip−k+1 · · ·xipQ, xjl+1 · · ·xjr Sil+1,...,ip−k

]

In this notation, l stands for the numbers of “links” between the c ’s and the d ’s, that is the number of
indexes appearing in both, and k stands for the number of variables before Q (from xip−k+1 to xip ). We
observe that

[
PQ,RS

]
= L(0, p).

Then, the same computation as above, using Lemma 13, yields the induction formula :

L(l, k) =
r − l

q + k
L(l + 1, k − 1) +

1
k + q

L(l, k − 1).

From this formula, we deduce by induction on j that, for all j :

L(0, p) =
(p + q − j)!

(p + q)!
(

r(r − 1) · · · (r − j + 1) L(j, p− j)

+
(

j

1

)
r(r − 1) · · · (r − j + 2) L(j − 1, p− j)

...

+
(

j

λ

)
r · · · (r − j + λ + 1) L(j − λ, p− j)

...

+
(

j

j − 1

)
r L(1, p− j)

+
(

j

j

)
L(0, p− j)

)
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Taking j = p , we get :

L(0, p) =
q!

(p + q)!
(
r(r − 1) · · · (r − p + 1) L(p, 0) + · · ·+

(
p

l

)
r · · · (r − l + 1) L(l, 0)+

+ · · ·+
(

p

1

)
r L(1, 0) + L(0, 0)

)
.

But, for every l :

L(l, 0) =
∑

i1,...,ip

∑

jl+1,...,jr

ci1,...,ip
di1,...,il,jl+1,...,jr

[
Q, xjl+1 · · ·xjr

Sil+1,...,ip

]

and by Lemma 9 :

=
(q − r + l)!

q!

∑

i1,...,ip

∑

jl+1,...,jr

ci1,...,ip
di1,...,il,jl+1,...,jr

[
Qjl+1···jr

, Sil+1,...,ip

]

=
(q − r + l)!

q!

∑

i1,...,il

[ ∑

jl+1,...,jr

di1,...,il,jl+1,...,jr Qjl+1,...,jr ,
∑

il+1,...,ip

ci1,...,ipSil+1,...,ip

]

=
(q − r + l)!

q!
(r − l)!

r!
(p− l)!

p!

∑

i1,...,il

[
R∗i1,...,il

(D)Q, P ∗i1,...,il
(D)S

]

Substituting each L(l, 0) into L(0, p) above yields the announced result.

Second proof. – Using Euler’s formula, we can write P = 1
p

∑
xiPi , and thus :

[
PQ, RS

]
=

1
p

∑

i

[
xiPiQ, RS

]
=

1
p(r + s)

∑

i

[
PiQ, (RS)i

]
.

Repeating this process on Pi , we get :

[
PQ, RS

]
=

(r + s− p)!
p!(r + s)!

∑

i1,...,ip

[
Pi1,...,ipQ, (RS)i1,...,ip

]
.

We now study the derivative (RS)i1,...,ip . Let τp be the set of partitions of {1, . . . , p} into two subsets. If
u , v are two such subsets, we let k be the number of elements in u , k′ the number of elements in v (of
course k + k′ = p). We also write u(j) for the j -th element of u , v(j′) for the j′ -th element of v . Then :

(RS)i1,...,ip =
∑

(u,v)∈τp

Riu(1),...,iu(k) Siv(1),...,iv(k′) .

Therefore :

[
PQ, RS

]
=

q!
p!(p + q)!

∑

i1,...,ip

∑

(u,v)∈τp

[
Pi1,...,ipQ, Riu(1),...,iu(k) Siv(1),...,iv(k′)

]
.

Repeating the same argument, we get :

[
PQ, RS

]
=

q!
p!(p + q)!

∑

(u,v)∈τp

∑

i1,...,ip

(q − r + k)!
(r − k)!q!

×

×
∑

jk+1,...,jr

[
(Pi1,...,ipQ)jk+1,...,jr , Riu(1),...,iu(k)jk+1,...,jr Siv(1),...,iv(k′)

]
.
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But Pip,...,ip
is a scalar, and therefore :

[
PQ,RS

]
=

q!
p!(p + q)!

∑

(u,v)∈τp

∑

i1,...,ip

(q − r + k)!
(r − k)!q!

×

×
∑

jk+1,...,jr

[
Pi1,...,ip

Qjk+1,...,jr
, Riu(1),...,iu(k)jk+1,...,jr

Siv(1),...,iv(k′)

]

Since both Pi1,...,ip
and Riu(1),...,iu(k),jk+1,...,jr

are scalars, this is also

=
1

p!(p + q)!

∑

(u,v)∈τp

∑

i1,...,ip

(q − r + k)!
(r − k)!

×

×
∑

jk+1,...,jr

[
Riu(1),...,iu(k),jk+1,...,jr Qjk+1,...,jr P i1,...,ip Siv(1),...,iv(k′)

]

=
1

p!(p + q)!

∑

(u,v)∈τp

(q − r + k)!
(r − k)!

∑

iu(1),...,iu(k)

[ ∑

jk+1,...,jr

Riu(1),...,iu(k),jk+1,...,jr
Qjk+1,...,jr

,
∑

iv(1),...,iv(k′)

P i1,...,ip
Siv(1),...,iv(k′)

]
,

=
1

p!(p + q)!

∑

(u,v)∈τp

(q − r + k)!
(r − k)!

×

×
∑

iu(1),...,iu(k)

[
(r − k)! R∗iu(1),...,iu(k)

(D)Q, (p− k)! P ∗iu(1),...,iu(k)
(D)S

]

=
1

p!(p + q)!

∑

(u,v)∈τp

(q − r + k)!(p− k)!
∑

i1,...,ik

[
R∗i1,...,ik

(D)Q, P ∗i1,...,ik
(D)S

]

=
1

p!(p + q)!

p∑

k=0

(
p

k

)
(q − r + k)!(p− k)!

∑

i1,...,ik

[
R∗i1,...,ik

(D)Q, P ∗i1,...,ik
(D)S

]
,

which gives :

[
PQ,RS

]
=

1
(p + q)!

p∑

k=0

(q − r + k)!
k!

∑

i1,...,ik

[
R∗i1,...,ik

(D)Q, P ∗i1,...,ik
(D)S

]

and concludes the second proof.
Taking P = R , Q = S (thus q = s , p = r ), we deduce immediately :

Corollary 14. – For any homogeneous polynomials P , Q of degree p and q respectively :

[
PQ

]2 =
1

(p + q)!

p∑

k=0

(q − p + k)!
k!

∑

i1,...,ik

[
P ∗i1,...,ik

(D)Q
]2

.

Since all terms on the right-hand side are positive, we deduce, taking k = p :
[
PQ

]2 ≥ q!
(p + q)!p!

∑

i1,...,ip

[
P ∗i1,...,ip

(D)Q
]2

.

But P ∗i1,...,ip
= p! ci1,...,ip is just a constant. So :

∑

i1,...,ip

[
P ∗i1,...,ip

(D)Q
]2 = p!2

∑

i1,...,ip

|ci1,...,ip |2
[
Q

]2 = p!2
[
P

]2[
Q

]2
,

and we deduce [
PQ

]2 ≥ p!q!
(p + q)!

[
P

]2[
Q

]2
,

which is Bombieri’s inequality [4].
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Using Bombieri’s proof in [4], J.L. Frot observed that the quantity
∑

i

[
PiQ, PQi

]
was real and positive.

We deduce a stronger statement from Theorem 12 :

Theorem 15. – For all homogeneous polynomials P , Q , with degree m and n respectively, we have :

∑ [
PiQ, PQi

]
=

1
(m + n− 1)!

m∑

k=0

(n−m + k)!
k!

(m− k)
N∑

i1,...,ik=1

[
P ∗i1,...,ik

(D) Q
]2

.

Proof. – We set ϕ(P, Q) =
∑ [

PiQ, PQi

]
. Then an immediate computation shows that

ϕ(P,Q) = m(m + n)
[
PQ

]2 −
N∑

i=1

[
PiQ

]2
. (10)

Applying Theorem 11, we have

[
PQ

]2 =
1

(m + n)!

m∑

k=0

(n−m + k)!
k!

N∑

i1,...,ik=1

[
P ∗i1,...,ik

(D)Q
]2

but
(Pi)i1,...,ik−1(D) = Pi1,...,ik−1,i(D),

and thus

ϕ(P,Q) =
m

(m + n− 1)!

m∑

k=0

(n−m + k)!
k!

∑

i1,...,ik

[
P ∗i1,...,ik

(D)Q
]2

−
m∑

k=1

(n−m + k)!
(k − 1)!

∑

i,i1,...,ik−1

[
P ∗i1,...,ik−1,i(D)Q

]2
,

which gives the result.

The previous results are algebraic identities. They have analytic consequences, which are quantitative
estimates, obtained by means of inequalities. These estimates will be the object of forthcoming papers.
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