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Recall that a polynomial P =
∑n

0 ajz
j , with complex coefficients, is said to have concentration d

(0 < d ≤ 1) at degree k if
k∑
0

|aj | ≥ d
n∑
0

|aj |. (0.1)

This concept, introduced by Beauzamy-Enflo in [1], has proved to be useful in order to obtain quantita-
tive estimates, independent of the degree : for instance, Jensen’s Inequality (Beauzamy [2], Rigler-Trimble-
Varga [12]), products of polynomials (Beauzamy-Enflo [1], Beauzamy-Bombieri-Enflo-Montgomery [4]), zeros
of H2 functions (Beauzamy [5]).

Let’s write the zeros of P in increasing order of moduli :

0 ≤ |z1| ≤ |z2| ≤ · · · (0.2)

In [6], S. Chou showed that, under assumption (0.1), the k + 1-st zero of P satisfies

|zk+1| ≥ R(d, k),

with R(d, k) > 0 depending only on d and k . Precise estimates were given for this number, which was
computed exactly for the class of Hurwitz polynomials (see [6]).

The present paper may be regarded as a continuation of [6], since we study here the distribution of all
zeros after the k + 1-st. It is organized as follows :

-In the first section, we give a general theory for the zeros of polynomials satisfying (0.1) ; we derive
several consequences, among them a radius of inclusion for the smallest zero. The methods used rely heavily
on the theory of analytic functions in the disk.

In the second section, we restrict ourselves to Hurwitz polynomials, for which, using direct proofs, more
precise numerical estimates can be given. We derive a generalization of Bernstein’s inequality, which does
not involve the degree anymore, but only the concentration data d and k .

The third section deals with a generalization of the second one to a class of entire functions ; it is a part
of the second author’s thesis ([7], chap. IV).

1. General Theory.

The main result of this section is :

Theorem 1.1. – If P is a polynomial with concentration d at degree k , with zeros ordered as in (0.2),

then ∣∣∣∣∣∣
∑
j>k

1
zj

∣∣∣∣∣∣ ≤ C(d, k) ;
∏
j>k

|zj | ≥
1

C(d, k)
,

with C(d, k) =
9k+3

d3

(
2(1 + d)

d

)k

.

Before turning to the proof, we observe that estimates starting with j > 0 (when k ≥ 1) cannot be
true : the polynomial zk + zk+1 has concentration 1/2 at degree k and has k zeros at the origin. We
observe also that estimates of

∑
j>k 1/|zj | cannot hold with just our assumptions : the polynomials 1 + zn ,

n ≥ 1, all have concentration 1/2 at degree 0, but
∑

j>0 1/|zj | = n . However,as we will see in § 2, such
estimates will be given for Hurwitz polynomials.

In order to prove Theorem 1.1, we will argue by induction on k . The case k = 0 is fairly simple.
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Proposition 1.2. – Let P be a polynomial with concentration d at degree 0 . Then∣∣∣∣∣∣
n∑

j=1

1
zj

∣∣∣∣∣∣ ≤ 1
d

;
n∏

j=1

|zj | ≥ d. (1.1)

Proof of Proposition 1.2. – The assumption |a0| ≥ d
∑n

1 |aj | implies |a0| ≥ d|a1| and |a0| ≥ d|an| . The
first one gives |

∏n
1 zj | ≥ d|

∑n
j=1

∏
i 6=j zi| , the second one |

∏n
1 zj | ≥ d .

In order to argue by induction, that is to pass from k−1 to k , we would like to have a tool saying that,
if α is a zero of P and if P has concentration d at degree k , then Q = P/(α− z) has some concentration
λ(d, k) > 0 at degree k − 1. But this is not true : P = (1 + z)z = z + z2 has concentration 1/2 at degree
1, but if we remove the factor 1 + z , Q = z has no concentration at degree 0. Here, the root removed is the
largest, but if we take 1− zn and remove 1− z , what remains does not have a fixed concentration at degree
0.

So the true statement is more complex, and is as follows : either the root z1 is small enough, and then
indeed Q = P/(z1−z) has concentration λ(d, k) > 0 at degree k−1, or all the zeros are rather large, and in
this case P already has some concentration at degree 0. The last part is studied in the following Theorem.

Theorem 1.3. – Let P be a polynomial with concentration d at degree k . Assume that all zeros satisfy

|zj | ≥ λ (0 < λ ≤ 1). Then P has concentration d′ at degree 0, with

d′ =
d3λk

8e29k+1
.

Proof of Theorem 1.3. – It will again be by induction on k . For k = 0, it is obvious. Assume it holds for
k − 1. Assume P has concentration d at degree k . Then a first (trivial) case can be excluded :

– if
∑k−1

0 |aj | ≥ (d/2)
∑n

0 |aj |, P has concentration d/2 at degree k − 1, and thus by the induction
hypothesis, concentration d′ = d3λk−1/26e29k ≥ d3λk/8e29k+1 at degree 0.

– so we are left with the case

|ak| ≥
d

2

n∑
0

|aj |. (1.2)

Define Pλ(z) = P (λz), 0 < λ ≤ 1. All zeros of Pλ have modulus ≥ 1, so Pλ , considered as a function
in the space H2 , is outer (see for instance Duren [8]). We will compute its concentration at degree k , using
l2 -norms :

Lemma 1.4. – Let P be a polynomial with coefficients satisfying (1.2), and with zeros satisfying |zj | ≥ λ

(0 < λ ≤ 1). Then (
k∑
0

|λjaj |2
)1/2

≥ d

2

(
n∑
0

|λjaj |2
)1/2

.

Proof of Lemma 1.4. – By (1.2),

|ak| >
d

2
(

n∑
0

|aj |2)1/2 ≥ d

2
(

k∑
0

|aj |2)1/2 . (1.3)

Consider the function

f(λ) =
(λk|ak|)2∑n
j=k λ2j |aj |2

=
|ak|2∑n

j=k λ2(j−k)|aj |2
.

2



It is a decreasing function of λ , 0 < λ ≤ 1. So it attains its minimum for λ = 1, which gives by (1.3) :

(λk|ak|)2 ≥ d2

4

n∑
j=k

λ2j |aj |2 ,

or
n∑

j=k

λ2j |aj |2 ≤ 4
d2
|λkak|2 .

Using a trivial estimate for j = 0, · · · , k − 1, we get

n∑
j=0

λ2j |aj |2 ≤ 4
d2

k∑
0

|λjaj |2 ,

which proves our Lemma.
We now use a result of [5], Prop. 1.6 : If F is an outer function in H2 , with concentration d at degree

k , measured in l2 -norm, that is, if

(
k∑
0

|aj |2)1/2 ≥ d (
n∑
0

|aj |2)1/2 ,

then it has concentration d′ = d2/e29k+1 at degree 0, in l2 -norm :

|a0| ≥
d2

e29k+1
(

n∑
0

|aj |2)1/2 .

Applying this to Pλ , we get, by Lemma 1.4 :

|a0| ≥
d2

4e29k+1
(

n∑
0

|λjaj |2)1/2

≥ d2

4e29k+1
|λkak|

≥ d3

8e29k+1
λk

n∑
0

|aj |

using (1.2) again, and Theorem 1.3 is proved in this case also.

Remark. – As pointed out by the referee, the dichotomy we use in the proof of Theorem 1.3 (either∑k−1
0 |aj | ≥ (d/2)

∑n
0 |aj | , or |ak| ≥ (d/2)

∑n
0 |aj |) is not optimal. If we consider instead

∑k−1
0 |aj | ≥

(1− a)d
∑n

0 |aj | , or |ak| ≥ ad
∑n

0 |aj | , the same proof works up to a = 1− (1/9)1/3 ∼ 0.51925, and the 8 in
the denominator of d′ can be replaced by a−3 .

If we restrict our attention to ak only, the proof of Theorem 1.3 gives

Theorem 1.5. – If |ak| ≥ d(
∑n

0 |aj |2)1/2 , and if all zeros satisfy |zj | ≥ λ , then

|a0| ≥
d2λk

e29k+1
|ak| ,

a result which should be compared to [5], Prop. 1.6.
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Before returning to the proof of Theorem 1.1, we observe that we can deduce from Theorem 1.5 an
estimate for the smallest zero of P .

A radius of inclusion, for the smallest zero, is the radius of a circle centered at the origin, containing
z1 . An estimate for such a radius can be found in Marden [11] (exercise 1, p. 126), but it depends on the
degree, whereas ours depends only on the concentration data d and k .

Corollary 1.6. – (Radius of inclusion for the smallest zero of a polynomial). Let P be any polynomial

with complex coefficients. Let

R = min
k

(
e29k+1 |a0|

∑n
0 |aj |2

|ak|3

)1/k

.

Then the disk D(0, R) contains at least one zero of P .

Proof of Corollary 1.6. – Choose a k for which the minimum is attained. Set

d = dk = |ak| /(
n∑
0

|aj |2)1/2 .

Then |ak| ≥ d(
∑n

0 |aj |2)1/2 , and by Theorem 1.5, if all zeros were > R , we would have

|a0| >
d2Rk|ak|
e29k+1

.

But |a0| = d2Rk|ak|/e29k+1 . Thus the disk of radius R contains at least a zero.
This criterion is useful when one of the coefficients is large. For instance, consider P = 1+1000z +3zn ,

for any n ≥ 2. Then R ≤ e292/1000 ∼ 0.6.

We come back to the proof of Theorem 1.1. We need one more lemma, dealing with concentrations. We
define cfk(P ) =

∑k
0 |aj |/

∑n
0 |aj | , the concentration factor of P at degree k .

Lemma 1.7. – Let P = (α− z)Q , with |α| < 1 . Then

cfk(P ) ≤ 1
1− |α|

cfk−1(Q) +
|α|

1− |α|
cfk(Q).

Proof of Lemma 1.7. – Writing P =
∑n

0 ajz
j , Q =

∑n−1
0 blz

l , we get

cfk(P ) =
|αb0|+

∑k
j=1 | − bj−1 + αbj |

|αb0|+
∑n−1

j=1 | − bj−1 + αbj |+ |bn−1|

≤
∑k−1

j=0 |bj |+ |α|
∑k

0 |bj |
(1 + |α|)|b0|+ (1− |α|)

∑n−1
j=1 |bj |

≤
∑k−1

j=0 |bj |+ |α|
∑k

0 |bj |
(1− |α|)

∑n−1
j=0 |bj |

,

which proves the result.

Lemma 1.8. – Let P and Q be as in Lemma 1.7. If cfk(P ) ≥ d and |α| ≤ d

2(1 + d)
, then cfk−1(Q) ≥ d/2 .

Proof of Lemma 1.8. – This follows immediately from Lemma 1.7, since cfk−1(Q) ≥ d− |α|(1 + d).

4



We may now prove Theorem 1.1. Assuming it holds for k− 1, we wish to prove it for k . Let P satisfy
(0.1).

– If the first zero, z1 , satisfies |z1| ≤ d/2(1 + d), then Q = P/(z1 − z) has concentration d/2 at degree
k − 1, by Lemma 1.8. Applying the induction hypothesis to Q yields∣∣∣∣∣∣

∑
j>k

1
zj

∣∣∣∣∣∣ ≤ C(
d

2
, k − 1) ,

∏
j>k

|zj | ≥ C−1(
d

2
, k − 1).

– If z1 , and therefore all other zeros satisfy

|zj | ≥
d

2(1 + d)
, (1.4)

Theorem 1.3, with λ =
d

2(1 + d)
, shows that, at degree 0, P has concentration

d′ =
d3

8e29k+1

(
d

2(1 + d)

)k

.

Therefore, by Proposition 1.2,

|
n∑
1

1
zj
| ≤ 1

d′
, (1.5)

n∏
1

|zj | ≥ d′. (1.6)

But, by (1.4), for all j , 1/|zj | ≤ 2(1 + d)/d , so

|
∑
j>k

1
zj
| ≤ 2k(1 + d)

d
+

1
d′

≤ 9k+3

d3

(
2(1 + d)

d

)k

.

We take

C(d, k) =
9k+3

d3

(
2(1 + d)

d

)k

,

and check that C(d/2, k − 1) ≤ C(d, k). Therefore, C(d, k) is a suitable bound for both cases.
To study

∏n
k+1 |zj | , let p be the index (if it exists) such that |zp| ≤ 1 < |zp+1| .

– If p ≤ k , then |zk+1| , . . . , |zn| ≥ 1, and
∏n

k+1 |zj | ≥ 1,
– If p > k , then |z1| , . . . , |zk| < 1, and

∏n
k+1 |zj | ≥

∏n
1 |zj | , and Theorem 1.1 is proved.

Examples. – We can mention for instance :
- the family of polynomials pn(z) = 1/n + 2z + (−1)nzn . If zj,n is the set of zeros of pn , then, for any

n , ∣∣ n∑
j=2

1
zj,n

∣∣ ≤ 311 · 5/8,

since all these polynomials have concentration 2/3 at degree 1.
- the partial sums sn(z) of the exponential function. All these partial sums have concentration 1/e at

degree 0, and therefore, if zj,n are the zeros of sn ,

∣∣ n∑
j=1

1
zj,n

∣∣ ≤ 93 · e3.

We now turn to Hurwitz polynomials, for which the general theory will become more precise.
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2. Hurwitz polynomials .

Recall that a polynomial P is a Hurwitz polynomial if its coefficients are real and positive and its roots
zj satisfy <zj ≤ 0 (here <z is the real part of z ). Such a polynomial may be written

P (z) =
∏

l

(z + αl)
∏
l′

(z + βl′)(z + β̄l′), (2.1)

where the αl ’s are real ≥ 0 and the βl′ ’s satisfy <βl′ ≥ 0.

Hurwitz polynomials play a special rôle in the context of dynamic stability (see Marden [11], chap. IX,
§ 36) ; their study, in the frame of concentration at low degrees, was initiated by Rigler-Trimble-Varga [12].

The main theorem of this section is :

Theorem 2.1. – Let P be a Hurwitz polynomial, with concentration d at degree k . Then

n∑
1

1
1− zj

≤ CH(d, k),

with CH(d, k) = 9 log(1/d) + (11k + 9) log 2 .

The general idea behind the proof is the same as before : either one root has small modulus ; we remove
it and get a polynomial with some concentration at degree k− 1, or all the roots are large, and then P has
some concentration at degree 0. However, the steps of the proof are technically quite different. The next
theorem is the analogue of Theorem 1.3. We define

tfk(P ) =
ak∑n
0 aj

=
ak

P (1)
,

which might be called the true concentration factor of P at degree k , for it indicates the importance of the
coefficient ak among all coefficients.

Theorem 2.2. – Let P be a Hurwitz polynomial with tfk(P ) ≥ d . Assume that all zeros satisfy |zj | ≥ λ .

Then :

a0 ≥ dak

(4 + 2
λ )k

.

Proof. – Put ζj = −1/zj , j = 1, . . . , n . We can write

P

a0
= (zζ1 + 1) · · · (zζn + 1),

and therefore
ak

a0
=

∑
l1<···<lk

<(ζl1 · · · ζlk),

which gives (
ak

a0

)2

=
∑

l1<···<lk
l′
1

<···<l′
k

<(ζl1 · · · ζlk · ζl′1
· · · ζl′

k
) .

In a product ζl1 · · · ζlk · ζl′1
· · · ζl′

k
, the number of distinct indexes is between k and 2k ; we write it as k + p

(0 ≤ p ≤ k ). If l1 = l′1 (for instance), we just replace ζ2
l1

by 1
λ ζl1 , using the fact that all the ζj have moduli

≤ 1/λ . We also observe that products of length k + p occur in the expansion of ak+p/a0 . Precisely :

ak+p

a0
=

∑
j1<···<jk+p

ζj1 · · · ζjk+p
.
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Combining suitable terms, we obtain this way

(
ak

a0

)2

≤
k∑

p=0

(
k + p

k

)(
k

p

)(
1
λ

)k−p
ak+p

a0
. (2.2)

The assumption tfk(P ) ≥ d implies, for p = 1, · · · , k ,

ak+p ≤ ak

d
.

Therefore, (
ak

a0

)2

≤ ak

da0

k∑
p=0

(
k + p

k

)(
k

p

)(
1
λ

)k−p

. (2.3)

Let Ak =
∑k

p=0

(
k+p

k

)(
k
p

) (
1
λ

)k−p . A rough estimate is :

Lemma 2.3. – We have Ak ≤ 2k(2 + 1
λ )k .

Proof of Lemma 2.3. – We write : (
k + p

k

)
=

p∑
m=0

(
p

m

)(
k

k −m

)
,

thus

Ak =
k∑

p=0

p∑
m=0

(
k

p

)(
p

m

)(
k

k −m

)(
1
λ

)k−p

=
k∑

m=0

(
k

m

) k∑
p=m

(
k

p

)(
p

m

)(
1
λ

)k−p

=
k∑

m=0

(
k

m

) k∑
p=m

(
k

m

)(
k −m

p−m

)(
1
λ

)k−p

=
k∑

m=0

(
k

m

)2 k∑
p=m

(
k −m

p−m

)(
1
λ

)k−p

=
k∑

m=0

(
k

m

)2(
1 +

1
λ

)k−m

≤ 2k
k∑

m=0

(
k

m

)(
1 +

1
λ

)k−m

≤ 2k

(
2 +

1
λ

)k

,

which proves the Lemma. Coming back to (2.3), we get :(
ak

a0

)2

≤ 2kak

da0
(2 +

1
λ

)k,

which proves Theorem 2.2.

The next two lemmas indicate what happens to the concentration when a real root is removed, or when
two complex conjugate roots are removed.
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Lemma 2.4. – If −α is a real root of P and Q = P/(α + z) , then

ak

P (1)
=

α

1 + α

bk

Q(1)
+

1
1 + α

bk−1

Q(1)
,

and therefore

tfk(P ) ≤ max{tfk(Q), tfk−1(Q)}.

Lemma 2.5. – If −β , −β̄ are non-real roots of P and Q = P/(β + z)(β̄ + z) ,

ak

P (1)
=

|β|2

|β|2 + 2<β + 1
bk

Q(1)
+

2<β

|β|2 + 2<β + 1
bk−1

Q(1)
+

1
|β|2 + 2<β + 1

bk−2

Q(1)
,

and therefore

tfk(P ) ≤ max{tfk(Q), tfk−1(Q), tfk−2(Q)}.

The proofs are elementary, and are left to the reader. We now turn to the proof of Theorem 2.1, which
will again be made by induction on k . We observe that the quantity

∑n
1 1/(1 − zj) is always real and

positive.

For k = 0, the assumption is

|
n∏
1

zj | ≥ d
n∏
1

|1− zj |, (2.4)

and the result in the case k = 0 is given by :

Proposition 2.6. – If P is a Hurwitz polynomial with concentration d at degree 0, then

n∑
1

1
1− zj

≤ 2 log
1
d

.

Proof of Proposition 2.6. – We write

n∑
1

1
1− zj

= n +
n∑
1

zj

1− zj

≤ n−
n∑
1

∣∣∣∣ zj

1− zj

∣∣∣∣2

≤ n

1−

(
n∏
1

∣∣∣∣ zj

1− zj

∣∣∣∣2
)1/n


≤ n(1− d2/n)

≤ 2 log 1/d .

The estimate is best possible : the polynomials

Pn =
(

z2 +
d1/n

1− d1/n

)n

all have concentration d at degree 0, and

2n∑
1

1
1− zj

= 2n(1− d1/n) → 2 log 1/d,

when n →∞ .
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Assume now Theorem 2.1 holds for k− 1, we will prove it for k . Let P be a Hurwitz polynomial with
concentration d at degree k .

– If
∑k−1

0 aj ≥ d/2
∑n

0 aj , P has concentration d/2 at degree k− 1, and by the induction hypothesis,

n∑
1

1
1− zj

≤ CH(d/2, k − 1). (2.5)

– Otherwise,

tfk(P ) ≥ d

2
; (2.6)

we now consider this case. Let λ = 1/2. Let m be the last index (if it exists) such that |zm| ≤ λ . Let
Q = P/(z − z1) · · · (z − zm) : this is a Hurwitz polynomial.

By Lemmas 2.4 and 2.5, for some k′ , 0 ≤ k′ ≤ k , we have tfk′(Q) ≥ d/2. By Theorem 2.2, writing
Q =

∑n−m
0 bjz

j , we get :

b0 ≥ d

2 · 8k′ bk′ ≥ d2

4 · 8k′

n−m∑
0

bj ,

using (2.6) again.
By Proposition 2.6 applied to Q ,

n∑
m+1

1
1− zj

≤ 2 log
4 · 8k′

d2
≤ 2 log

4 · 8k

d2
. (2.7)

Since ak ≥ (d/2)
∑n

0 aj , we also have

ak ≥ d

2
(

n∑
0

a2
j )

1/2 ,

and [5], Theorem 2.1, shows that the number m of zeros of P in the disk D(O, 1/2) is at most

N =
log(2/d) + k log 2

log(5/4)
.

So, since <zj ≤ 0, we get
m∑
1

1
1− zj

≤ N, (2.8)

and we finally deduce from (2.7) and (2.8) the estimate :

n∑
1

1
1− zj

≤ 9 log(1/d) + (11k + 9) log 2,

which proves Theorem 2.1, since CH(d/2, k − 1) ≤ CH(d, k).

We observe that, for fixed d , CH(d, k) is proportional to k . This order of magnitude is best possible.
Indeed, P = (z2 + 1)k+1 has concentration 1/2 at degree k , and

∑2(k+1)
1 1/(1− zj) = k + 1.

For fixed k , CH(d, k) is proportional to log 1/d , and this order of magnitude is also best possible, as
we already mentioned (Proposition 2.6).

We now deduce an interesting corollary :
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Corollary 2.7. A Generalized Bernstein Inequality. – Let P be a Hurwitz polynomial, with concentration

d at degree k . Define ‖P‖∞ = maxθ |P (eiθ)| . Then

‖P ′‖∞ ≤ CH(d, k) ‖P‖∞ ,

where, as before, CH(d, k) = 9 log(1/d) + (11k + 9) log 2 .

Proof of Corollary 2.7. – It follows immediately from Theorem 2.1, since ‖P‖∞ = P (1), ‖P ′‖∞ = P ′(1),
and

P ′(1)
P (1)

=
n∑
1

1
1− zj

.

Classical Bernstein’s inequality is valid for any polynomial, but involves the degree : if the degree of P

is n ,
‖P ′‖∞ ≤ n ‖P‖∞ .

Our extension does not involve the degree (it uses only d and k ), but it is valid only for Hurwitz polynomials.
It cannot be valid in general : Pn = 1− zn all have concentration 1/2 at degree 0, but ‖P ′‖∞/‖P‖∞ = n .

From Theorem 2.1, we can easily deduce estimates for the quantities we considered in § 1 :

Corollary 2.8. – Let P be a Hurwitz polynomial with concentration d at degree k . Then∣∣∑
j>k

1
zj

∣∣ ≤ (1 +
1

RH
)2(CH + 1) ,

where RH = 1/(1− d)1/(k+1) − 1 is the lower bound for |zk+1| obtained in [6].

Proof. – We observe that
∑

j>k 1/zj may not be real : it depends on whether zk and zk+1 are conjugate
or not. However, in all cases, ∣∣∣∣∣∣

∑
j>k

1
1− zj

∣∣∣∣∣∣ ≤
n∑
1

1
1− zj

+ 1.

Now, if α is real, α > RH ,
1
α

≤ (1 +
1

RH
)

1
1 + α

, (2.9)

and if <β > 0, |β| > RH ,
1
β

+
1
β̄

≤ (1 +
1

RH
)2
( 1
1 + β

+
1

1 + β̄

)
; (2.10)

the Corollary follows.

Corollary 2.9. – Let P be as above. Then

n∏
k+1

|zj | ≥ e
−(1+ 1

RH
)2(1+CH)

.

Proof. – We have :
n∑

k+1

log
1

|zj |2
≤

n∑
k+1

1
|zj |2

.

If zj is real, zj ≤ 0, we use (2.9) and obtain

1
|zj |

≤ (1 +
1

RH
)

1
1− zj

,
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1
|zj |2

≤ (1 +
1

RH
)2

1
(1− zj)2

≤ (1 +
1

RH
)2

1
1− zj

.

If zj is not real but <zj ≤ 0 and |zj | ≥ RH :

1
|zj |2

≤ (1 +
1

R2
H

) (
1

1− zj
+

1
1− z̄j

)

≤ (1 +
1

RH
)2 (

1
1− zj

+
1

1− z̄j
) ,

Summing up, we obtain

n∑
k+1

1
|zj |2

≤ (1 +
1

RH
)2

 ∑
zj real

j>k

(
1

1− zj
+

∑
zj not real

j>k

(
1

1− zj
+

1
1− z̄j

)


≤ 2(1 +

1
RH

)2
n∑
1

1
1− zj

≤ 2(1 +
1

RH
)2 CH ,

which gives the result.

Within the framework of Hurwitz polynomials, the process of removing one (or two conjugate) roots
leads to a polynomial with concentration at degree k−1 (we saw in § 1 that this was not the case in general) :

Proposition 2.10. – Let P be a Hurwitz polynomial with tfk(P ) ≥ d . With z1 as before, define Q =
P/(z1 − z) if z1 is real, Q = P/(z1 − z)(z̄1 − z) if z1 is not real. Then Q is a Hurwitz polynomial, with

concentration d2/2(4 + d)k at degree k − 1 .

Proof. – If |z1| < d/2, this is clear from Lemmas 2.4 and 2.5. If |z1| ≥ d/2, Theorem 2.2 shows that P

has concentration d′ = d2/2(4 + d)k at degree 0. But cf0(Q) ≥ cf0(P ), so Q itself has concentration d′ at
degree 0, so at degree k − 1.

Remark. – If we define Q = P/(z1 − z), no matter whether z1 is real or not, then Q has concentration
4 + 2

√
2

4 + 3
√

2
d′, at degree k − 1 (but of course Q is not Hurwitz if z1 is not real).

Indeed, the case |z1| < d/2 is handled as before. Assume z1 is not real and |z1| > d/2. Set z1 = −β ,
R = P/(β + z)(β̄ + z) =

∑n−2
0 cjz

j , Q = (z + β̄)R . We have

d′ =
P (0)
P (1)

=
c0|β|2

R(1)|1 + β|2
, (2.11)

and

cf0(Q) =
|β|c0

|R(z)(β̄ + z)|1
,

with
|R(z)(β̄ + z)|1 = |c0β̄|+ |c0 + c1β̄|+ · · ·+ |ck−1 + ckβ̄|+ · · ·

≤ (
∑

cj)(1 + |β|),

since all cj ’s are ≥ 0. So we get

cf0(Q) ≥ c0|β|
R(1)(1 + |β|)

= d′
|1 + β|2

|β|(1 + |β|)
,

11



by (2.11). Writing |1 + β|2 ≥ 1 + |β|2 , since Re(β) ≥ 0, we obtain

cf0(Q) ≥ d′(1 + |β|2)
|β|(1 + |β|)

.

The function (1 + x2)/(x + x2), for x ≥ 0, takes its minimum at x = 1 +
√

2, and its minimal value is
(4 + 2

√
2)/(4 + 3

√
2). So we find

cf0(Q) ≥ 4 + 2
√

2
4 + 3

√
2

d′,

which proves our claim.

We now give a converse to Corollary 2.7 :

Theorem 2.11. – Let C > 0 . Let P be a Hurwitz polynomial, satisfying

‖P ′‖∞
‖P‖∞

≤ C. (2.12)

Then, for every k ≥ C , the concentration of P at degree k is exp{−C(1 + 2ρ)(1 + ρ)/2ρ2} , where

ρ = max

{
k − C + 1

C
,

√
k − C + 1

C

}
. (2.13)

We need two simple lemmas :

Lemma 2.12. – Let z ∈ CI , with <z ≤ 0 . Then

< 1
1− z

≥ 1
1 + max(|z|, |z|2)

.

Lemma 2.13. – Let z ∈ CI , with <z ≤ 0 , and |z| > ρ > 0 . Then

|1− 1
z
|2 ≤ 1 + a(ρ)< 1

1− z
,

where

a(ρ) =
(1 + 2ρ)(1 + ρ)

ρ2
.

The proofs are left to the reader.

We now prove Theorem 2.11. First, take any ρ > 0. Under assumptions (2.12), the number N of zeros
of P in the disk D(O, ρ) is bounded by a number depending only on C , ρ . Indeed, writing P =

∏n
1 (z−zj),

let m be the last index such that |zj | ≤ ρ . We get

m∑
1

1
1− zj

≤
n∑
1

1
1− zj

=
P ′(1)
P (1)

≤ C ;

from which follows, by Lemma 2.12,

N ≤ C
(
1 + max{ρ, ρ2}

)
. (2.14)

We now set Q =
∏m

1 (z− zj), R =
∏n

m+1(z− zj). We have found a bound for the degree of Q , and we now
show that R has a concentration at degree 0, depending only on ρ and C . Let δ = cf0(R). Then :

δ =
n∏

m+1

∣∣∣∣ zj

1− zj

∣∣∣∣ ,
12



1
δ2

=
n∏

m+1

∣∣∣∣1− 1
zj

∣∣∣∣2

≤

(
1

m− n

n∑
m+1

∣∣∣∣1− 1
zj

∣∣∣∣2
)n−m

≤

(
1 +

a(ρ)
n−m

n∑
m+1

1
1− zj

)n−m

≤
(

1 +
a(ρ)C
n−m

)n−m

≤ ea(ρ)C ,

and therefore
δ ≥ e−a(ρ)C/2 . (2.15)

Since P = Q ·R , we deduce from (2.14) and (2.15) that the polynomial P has concentration exp{−a(ρ)C/2}
at degree k = [C(1 + max{ρ, ρ2})] . The choice of ρ indicated in (2.13) gives the result.

We now give an extension to a class of entire functions.

3. Extension to a class of entire functions.

As we already explained, the results presented in the previous paragraphs are independent of the degrees
of the polynomials involved, and depend only on the concentration data (d, k). Therefore, they will extend
naturally to a class of entire functions, when the proper framework is defined.

We first consider the space of functions with absolutely convergent Fourier series :

A(Π) = {f =
∞∑
−∞

cje
ijθ ;

∞∑
−∞

|cj | < ∞},

and inside this space the subspace of one-sided series :

A+(Π) = {f =
∞∑
0

cje
ijθ ;

∞∑
0

|cj | < ∞},

equipped with the norm ‖f‖A =
∑∞

0 |cj | .
We refer the reader to the book by J.-P. Kahane [9] for a detailed study of these spaces.
The space A+ is obviously isometric to the space l1( NI ), in the isometry f → (cj)j≥0 , so we will write

|f |1 instead of ‖f‖A .
We also observe that if f is in A+ , the function f(z) =

∑∞
0 cjz

j is analytic in the unit disk.

We define the partial sums of f by sk(f) =
∑k

0 cjz
j , and the concentration at degree k by

cfk(f) =
|sk(f)|1
|f |1

.

We denote by A+(d, k) the set of functions in A+ with concentration d at degree k .
We also define the Taylor-Hurwitz functions (generalizing Hurwitz polynomials) : these are functions of

the form :

f(z) = azm
∞∏
1

(1 +
z

αj
) (3.1)

where :
- either αj is real positive, or αj is not real, but satisfies <αj ≥ 0 and the term with ᾱj also exists,
- the sequence of (αj) satisfies

∑∞
1 1/|αj | < ∞ .
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We denote by AH the space of Taylor-Hurwitz functions (equipped with the same norm), and by
AH(d, k) the subspace of functions having concentration d at degree k .

Any Taylor-Hurwitz function has genus 0 and order at most 1 (see for instance Levin [10] for definitions).
It may have order 1 : this is the case of the function

f(z) =
∞∏
2

(1 +
z

n(lnn)2
).

The theory and results of § 2 extend naturally, and we get :

Theorem 3.1. – Let f be a function in AH(d, k) . Then

|f ′|1
|f |1

≤ CH(d, k),

where CH(d, k) is defined in Theorem 2.1.

Since for such a function the Taylor coefficients are real and positive, we have |f |1 = f(1) = ‖f‖∞ , and
we obtain again a generalization of Bernstein’s inequality.

The converse also holds :

Theorem 3.2. – Let C > 0 and f in A+ , with

|f ′|1
|f |1

≤ C.

Then, for every k ≥ C , f has concentration exp{−C(1 + 2ρ)(1 + ρ)/2ρ2} at degree k ; the number ρ is

defined as in (2.13).

The statement of Theorem 3.1 would be false in the framework of functions in A+ , assuming only the
coefficients to be positive. Indeed, the set of functions

fn(z) = e(zn) = 1 + zn +
z2n

2!
+ · · ·

all have concentration 1/e at degree 0, but f ′n(1)/fn(1) = n .
So the fact that the order of the function is at most 1 plays an essential rôle in Theorem 3.1. This

theorem, however, can be extended to functions of higher order, but the bound on |f ′|1/|f |1 then depends
on d , k , and on the order.

Acknowledgements. – The authors wish to thank the referee for his comments, which led to substan-
tial improvements of the original estimates.
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